Step | Hyp | Ref
| Expression |
1 | | ecopopr.1 |
. . . . 5
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} |
2 | 1 | relopabi 4705 |
. . . 4
⊢ Rel ∼ |
3 | 2 | a1i 9 |
. . 3
⊢ (⊤
→ Rel ∼ ) |
4 | | ecopopr.com |
. . . . 5
⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) |
5 | 1, 4 | ecopovsym 6565 |
. . . 4
⊢ (𝑓 ∼ 𝑔 → 𝑔 ∼ 𝑓) |
6 | 5 | adantl 275 |
. . 3
⊢
((⊤ ∧ 𝑓
∼
𝑔) → 𝑔 ∼ 𝑓) |
7 | | ecopopr.cl |
. . . . 5
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
8 | | ecopopr.ass |
. . . . 5
⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) |
9 | | ecopopr.can |
. . . . 5
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) |
10 | 1, 4, 7, 8, 9 | ecopovtrn 6566 |
. . . 4
⊢ ((𝑓 ∼ 𝑔 ∧ 𝑔 ∼ ℎ) → 𝑓 ∼ ℎ) |
11 | 10 | adantl 275 |
. . 3
⊢
((⊤ ∧ (𝑓
∼
𝑔 ∧ 𝑔 ∼ ℎ)) → 𝑓 ∼ ℎ) |
12 | | vex 2712 |
. . . . . . . . . . 11
⊢ 𝑔 ∈ V |
13 | | vex 2712 |
. . . . . . . . . . 11
⊢ ℎ ∈ V |
14 | 12, 13, 4 | caovcom 5968 |
. . . . . . . . . 10
⊢ (𝑔 + ℎ) = (ℎ + 𝑔) |
15 | 1 | ecopoveq 6564 |
. . . . . . . . . 10
⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → (〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉 ↔ (𝑔 + ℎ) = (ℎ + 𝑔))) |
16 | 14, 15 | mpbiri 167 |
. . . . . . . . 9
⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
17 | 16 | anidms 395 |
. . . . . . . 8
⊢ ((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) → 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
18 | 17 | rgen2a 2508 |
. . . . . . 7
⊢
∀𝑔 ∈
𝑆 ∀ℎ ∈ 𝑆 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉 |
19 | | breq12 3966 |
. . . . . . . . 9
⊢ ((𝑓 = 〈𝑔, ℎ〉 ∧ 𝑓 = 〈𝑔, ℎ〉) → (𝑓 ∼ 𝑓 ↔ 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉)) |
20 | 19 | anidms 395 |
. . . . . . . 8
⊢ (𝑓 = 〈𝑔, ℎ〉 → (𝑓 ∼ 𝑓 ↔ 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉)) |
21 | 20 | ralxp 4722 |
. . . . . . 7
⊢
(∀𝑓 ∈
(𝑆 × 𝑆)𝑓 ∼ 𝑓 ↔ ∀𝑔 ∈ 𝑆 ∀ℎ ∈ 𝑆 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
22 | 18, 21 | mpbir 145 |
. . . . . 6
⊢
∀𝑓 ∈
(𝑆 × 𝑆)𝑓 ∼ 𝑓 |
23 | 22 | rspec 2506 |
. . . . 5
⊢ (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 ∼ 𝑓) |
24 | 23 | a1i 9 |
. . . 4
⊢ (⊤
→ (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 ∼ 𝑓)) |
25 | | opabssxp 4653 |
. . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) |
26 | 1, 25 | eqsstri 3156 |
. . . . . 6
⊢ ∼
⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) |
27 | 26 | ssbri 4004 |
. . . . 5
⊢ (𝑓 ∼ 𝑓 → 𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓) |
28 | | brxp 4610 |
. . . . . 6
⊢ (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 ↔ (𝑓 ∈ (𝑆 × 𝑆) ∧ 𝑓 ∈ (𝑆 × 𝑆))) |
29 | 28 | simplbi 272 |
. . . . 5
⊢ (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 → 𝑓 ∈ (𝑆 × 𝑆)) |
30 | 27, 29 | syl 14 |
. . . 4
⊢ (𝑓 ∼ 𝑓 → 𝑓 ∈ (𝑆 × 𝑆)) |
31 | 24, 30 | impbid1 141 |
. . 3
⊢ (⊤
→ (𝑓 ∈ (𝑆 × 𝑆) ↔ 𝑓 ∼ 𝑓)) |
32 | 3, 6, 11, 31 | iserd 6495 |
. 2
⊢ (⊤
→ ∼ Er (𝑆 × 𝑆)) |
33 | 32 | mptru 1341 |
1
⊢ ∼ Er
(𝑆 × 𝑆) |