ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecopover GIF version

Theorem ecopover 6628
Description: Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ecopopr.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
ecopopr.com (𝑥 + 𝑦) = (𝑦 + 𝑥)
ecopopr.cl ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
ecopopr.ass ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
ecopopr.can ((𝑥𝑆𝑦𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))
Assertion
Ref Expression
ecopover Er (𝑆 × 𝑆)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢, +   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣,𝑢
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem ecopover
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecopopr.1 . . . . 5 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
21relopabi 4750 . . . 4 Rel
32a1i 9 . . 3 (⊤ → Rel )
4 ecopopr.com . . . . 5 (𝑥 + 𝑦) = (𝑦 + 𝑥)
51, 4ecopovsym 6626 . . . 4 (𝑓 𝑔𝑔 𝑓)
65adantl 277 . . 3 ((⊤ ∧ 𝑓 𝑔) → 𝑔 𝑓)
7 ecopopr.cl . . . . 5 ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
8 ecopopr.ass . . . . 5 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
9 ecopopr.can . . . . 5 ((𝑥𝑆𝑦𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))
101, 4, 7, 8, 9ecopovtrn 6627 . . . 4 ((𝑓 𝑔𝑔 ) → 𝑓 )
1110adantl 277 . . 3 ((⊤ ∧ (𝑓 𝑔𝑔 )) → 𝑓 )
12 vex 2740 . . . . . . . . . . 11 𝑔 ∈ V
13 vex 2740 . . . . . . . . . . 11 ∈ V
1412, 13, 4caovcom 6027 . . . . . . . . . 10 (𝑔 + ) = ( + 𝑔)
151ecopoveq 6625 . . . . . . . . . 10 (((𝑔𝑆𝑆) ∧ (𝑔𝑆𝑆)) → (⟨𝑔, 𝑔, ⟩ ↔ (𝑔 + ) = ( + 𝑔)))
1614, 15mpbiri 168 . . . . . . . . 9 (((𝑔𝑆𝑆) ∧ (𝑔𝑆𝑆)) → ⟨𝑔, 𝑔, ⟩)
1716anidms 397 . . . . . . . 8 ((𝑔𝑆𝑆) → ⟨𝑔, 𝑔, ⟩)
1817rgen2a 2531 . . . . . . 7 𝑔𝑆𝑆𝑔, 𝑔,
19 breq12 4006 . . . . . . . . 9 ((𝑓 = ⟨𝑔, ⟩ ∧ 𝑓 = ⟨𝑔, ⟩) → (𝑓 𝑓 ↔ ⟨𝑔, 𝑔, ⟩))
2019anidms 397 . . . . . . . 8 (𝑓 = ⟨𝑔, ⟩ → (𝑓 𝑓 ↔ ⟨𝑔, 𝑔, ⟩))
2120ralxp 4767 . . . . . . 7 (∀𝑓 ∈ (𝑆 × 𝑆)𝑓 𝑓 ↔ ∀𝑔𝑆𝑆𝑔, 𝑔, ⟩)
2218, 21mpbir 146 . . . . . 6 𝑓 ∈ (𝑆 × 𝑆)𝑓 𝑓
2322rspec 2529 . . . . 5 (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 𝑓)
2423a1i 9 . . . 4 (⊤ → (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 𝑓))
25 opabssxp 4698 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
261, 25eqsstri 3187 . . . . . 6 ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
2726ssbri 4045 . . . . 5 (𝑓 𝑓𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓)
28 brxp 4655 . . . . . 6 (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 ↔ (𝑓 ∈ (𝑆 × 𝑆) ∧ 𝑓 ∈ (𝑆 × 𝑆)))
2928simplbi 274 . . . . 5 (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓𝑓 ∈ (𝑆 × 𝑆))
3027, 29syl 14 . . . 4 (𝑓 𝑓𝑓 ∈ (𝑆 × 𝑆))
3124, 30impbid1 142 . . 3 (⊤ → (𝑓 ∈ (𝑆 × 𝑆) ↔ 𝑓 𝑓))
323, 6, 11, 31iserd 6556 . 2 (⊤ → Er (𝑆 × 𝑆))
3332mptru 1362 1 Er (𝑆 × 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wtru 1354  wex 1492  wcel 2148  wral 2455  cop 3595   class class class wbr 4001  {copab 4061   × cxp 4622  Rel wrel 4629  (class class class)co 5870   Er wer 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4119  ax-pow 4172  ax-pr 4207
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-iun 3887  df-br 4002  df-opab 4063  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-iota 5175  df-fv 5221  df-ov 5873  df-er 6530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator