ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspec Unicode version

Theorem rspec 2518
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
Hypothesis
Ref Expression
rspec.1  |-  A. x  e.  A  ph
Assertion
Ref Expression
rspec  |-  ( x  e.  A  ->  ph )

Proof of Theorem rspec
StepHypRef Expression
1 rspec.1 . 2  |-  A. x  e.  A  ph
2 rsp 2513 . 2  |-  ( A. x  e.  A  ph  ->  ( x  e.  A  ->  ph ) )
31, 2ax-mp 5 1  |-  ( x  e.  A  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-ral 2449
This theorem is referenced by:  rspec2  2555  vtoclri  2801  isarep2  5275  mpoexw  6181  ecopover  6599  ecopoverg  6602  indstr  9531
  Copyright terms: Public domain W3C validator