ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspec Unicode version

Theorem rspec 2559
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
Hypothesis
Ref Expression
rspec.1  |-  A. x  e.  A  ph
Assertion
Ref Expression
rspec  |-  ( x  e.  A  ->  ph )

Proof of Theorem rspec
StepHypRef Expression
1 rspec.1 . 2  |-  A. x  e.  A  ph
2 rsp 2554 . 2  |-  ( A. x  e.  A  ph  ->  ( x  e.  A  ->  ph ) )
31, 2ax-mp 5 1  |-  ( x  e.  A  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2177   A.wral 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1534
This theorem depends on definitions:  df-bi 117  df-ral 2490
This theorem is referenced by:  rspec2  2596  vtoclri  2849  isarep2  5366  mpoexw  6306  ecopover  6727  ecopoverg  6730  indstr  9721
  Copyright terms: Public domain W3C validator