| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclri | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| vtoclri.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclri.2 | ⊢ ∀𝑥 ∈ 𝐵 𝜑 |
| Ref | Expression |
|---|---|
| vtoclri | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclri.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | vtoclri.2 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 𝜑 | |
| 3 | 2 | rspec 2560 | . 2 ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| 4 | 1, 3 | vtoclga 2844 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ∀wral 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 |
| This theorem is referenced by: ordpwsucexmid 4636 bj-nn0suc0 16085 |
| Copyright terms: Public domain | W3C validator |