Step | Hyp | Ref
| Expression |
1 | | ecopopr.1 |
. . . . 5
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} |
2 | 1 | relopabi 4737 |
. . . 4
⊢ Rel ∼ |
3 | 2 | a1i 9 |
. . 3
⊢ (⊤
→ Rel ∼ ) |
4 | | ecopoprg.com |
. . . . 5
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
5 | 1, 4 | ecopovsymg 6612 |
. . . 4
⊢ (𝑓 ∼ 𝑔 → 𝑔 ∼ 𝑓) |
6 | 5 | adantl 275 |
. . 3
⊢
((⊤ ∧ 𝑓
∼
𝑔) → 𝑔 ∼ 𝑓) |
7 | | ecopoprg.cl |
. . . . 5
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
8 | | ecopoprg.ass |
. . . . 5
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
9 | | ecopoprg.can |
. . . . 5
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) |
10 | 1, 4, 7, 8, 9 | ecopovtrng 6613 |
. . . 4
⊢ ((𝑓 ∼ 𝑔 ∧ 𝑔 ∼ ℎ) → 𝑓 ∼ ℎ) |
11 | 10 | adantl 275 |
. . 3
⊢
((⊤ ∧ (𝑓
∼
𝑔 ∧ 𝑔 ∼ ℎ)) → 𝑓 ∼ ℎ) |
12 | 4 | adantl 275 |
. . . . . . . . . . 11
⊢ ((((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
13 | | simpll 524 |
. . . . . . . . . . 11
⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → 𝑔 ∈ 𝑆) |
14 | | simplr 525 |
. . . . . . . . . . 11
⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → ℎ ∈ 𝑆) |
15 | 12, 13, 14 | caovcomd 6009 |
. . . . . . . . . 10
⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → (𝑔 + ℎ) = (ℎ + 𝑔)) |
16 | 1 | ecopoveq 6608 |
. . . . . . . . . 10
⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → (〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉 ↔ (𝑔 + ℎ) = (ℎ + 𝑔))) |
17 | 15, 16 | mpbird 166 |
. . . . . . . . 9
⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
18 | 17 | anidms 395 |
. . . . . . . 8
⊢ ((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) → 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
19 | 18 | rgen2a 2524 |
. . . . . . 7
⊢
∀𝑔 ∈
𝑆 ∀ℎ ∈ 𝑆 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉 |
20 | | breq12 3994 |
. . . . . . . . 9
⊢ ((𝑓 = 〈𝑔, ℎ〉 ∧ 𝑓 = 〈𝑔, ℎ〉) → (𝑓 ∼ 𝑓 ↔ 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉)) |
21 | 20 | anidms 395 |
. . . . . . . 8
⊢ (𝑓 = 〈𝑔, ℎ〉 → (𝑓 ∼ 𝑓 ↔ 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉)) |
22 | 21 | ralxp 4754 |
. . . . . . 7
⊢
(∀𝑓 ∈
(𝑆 × 𝑆)𝑓 ∼ 𝑓 ↔ ∀𝑔 ∈ 𝑆 ∀ℎ ∈ 𝑆 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
23 | 19, 22 | mpbir 145 |
. . . . . 6
⊢
∀𝑓 ∈
(𝑆 × 𝑆)𝑓 ∼ 𝑓 |
24 | 23 | rspec 2522 |
. . . . 5
⊢ (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 ∼ 𝑓) |
25 | 24 | a1i 9 |
. . . 4
⊢ (⊤
→ (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 ∼ 𝑓)) |
26 | | opabssxp 4685 |
. . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) |
27 | 1, 26 | eqsstri 3179 |
. . . . . 6
⊢ ∼
⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) |
28 | 27 | ssbri 4033 |
. . . . 5
⊢ (𝑓 ∼ 𝑓 → 𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓) |
29 | | brxp 4642 |
. . . . . 6
⊢ (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 ↔ (𝑓 ∈ (𝑆 × 𝑆) ∧ 𝑓 ∈ (𝑆 × 𝑆))) |
30 | 29 | simplbi 272 |
. . . . 5
⊢ (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 → 𝑓 ∈ (𝑆 × 𝑆)) |
31 | 28, 30 | syl 14 |
. . . 4
⊢ (𝑓 ∼ 𝑓 → 𝑓 ∈ (𝑆 × 𝑆)) |
32 | 25, 31 | impbid1 141 |
. . 3
⊢ (⊤
→ (𝑓 ∈ (𝑆 × 𝑆) ↔ 𝑓 ∼ 𝑓)) |
33 | 3, 6, 11, 32 | iserd 6539 |
. 2
⊢ (⊤
→ ∼ Er (𝑆 × 𝑆)) |
34 | 33 | mptru 1357 |
1
⊢ ∼ Er
(𝑆 × 𝑆) |