ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecopoverg GIF version

Theorem ecopoverg 6630
Description: Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is an equivalence relation. (Contributed by Jim Kingdon, 1-Sep-2019.)
Hypotheses
Ref Expression
ecopopr.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
ecopoprg.com ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
ecopoprg.cl ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
ecopoprg.ass ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
ecopoprg.can ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))
Assertion
Ref Expression
ecopoverg Er (𝑆 × 𝑆)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢, +   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣,𝑢
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem ecopoverg
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecopopr.1 . . . . 5 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
21relopabi 4749 . . . 4 Rel
32a1i 9 . . 3 (⊤ → Rel )
4 ecopoprg.com . . . . 5 ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
51, 4ecopovsymg 6628 . . . 4 (𝑓 𝑔𝑔 𝑓)
65adantl 277 . . 3 ((⊤ ∧ 𝑓 𝑔) → 𝑔 𝑓)
7 ecopoprg.cl . . . . 5 ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
8 ecopoprg.ass . . . . 5 ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
9 ecopoprg.can . . . . 5 ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))
101, 4, 7, 8, 9ecopovtrng 6629 . . . 4 ((𝑓 𝑔𝑔 ) → 𝑓 )
1110adantl 277 . . 3 ((⊤ ∧ (𝑓 𝑔𝑔 )) → 𝑓 )
124adantl 277 . . . . . . . . . . 11 ((((𝑔𝑆𝑆) ∧ (𝑔𝑆𝑆)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
13 simpll 527 . . . . . . . . . . 11 (((𝑔𝑆𝑆) ∧ (𝑔𝑆𝑆)) → 𝑔𝑆)
14 simplr 528 . . . . . . . . . . 11 (((𝑔𝑆𝑆) ∧ (𝑔𝑆𝑆)) → 𝑆)
1512, 13, 14caovcomd 6025 . . . . . . . . . 10 (((𝑔𝑆𝑆) ∧ (𝑔𝑆𝑆)) → (𝑔 + ) = ( + 𝑔))
161ecopoveq 6624 . . . . . . . . . 10 (((𝑔𝑆𝑆) ∧ (𝑔𝑆𝑆)) → (⟨𝑔, 𝑔, ⟩ ↔ (𝑔 + ) = ( + 𝑔)))
1715, 16mpbird 167 . . . . . . . . 9 (((𝑔𝑆𝑆) ∧ (𝑔𝑆𝑆)) → ⟨𝑔, 𝑔, ⟩)
1817anidms 397 . . . . . . . 8 ((𝑔𝑆𝑆) → ⟨𝑔, 𝑔, ⟩)
1918rgen2a 2531 . . . . . . 7 𝑔𝑆𝑆𝑔, 𝑔,
20 breq12 4005 . . . . . . . . 9 ((𝑓 = ⟨𝑔, ⟩ ∧ 𝑓 = ⟨𝑔, ⟩) → (𝑓 𝑓 ↔ ⟨𝑔, 𝑔, ⟩))
2120anidms 397 . . . . . . . 8 (𝑓 = ⟨𝑔, ⟩ → (𝑓 𝑓 ↔ ⟨𝑔, 𝑔, ⟩))
2221ralxp 4766 . . . . . . 7 (∀𝑓 ∈ (𝑆 × 𝑆)𝑓 𝑓 ↔ ∀𝑔𝑆𝑆𝑔, 𝑔, ⟩)
2319, 22mpbir 146 . . . . . 6 𝑓 ∈ (𝑆 × 𝑆)𝑓 𝑓
2423rspec 2529 . . . . 5 (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 𝑓)
2524a1i 9 . . . 4 (⊤ → (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 𝑓))
26 opabssxp 4697 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
271, 26eqsstri 3187 . . . . . 6 ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
2827ssbri 4044 . . . . 5 (𝑓 𝑓𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓)
29 brxp 4654 . . . . . 6 (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 ↔ (𝑓 ∈ (𝑆 × 𝑆) ∧ 𝑓 ∈ (𝑆 × 𝑆)))
3029simplbi 274 . . . . 5 (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓𝑓 ∈ (𝑆 × 𝑆))
3128, 30syl 14 . . . 4 (𝑓 𝑓𝑓 ∈ (𝑆 × 𝑆))
3225, 31impbid1 142 . . 3 (⊤ → (𝑓 ∈ (𝑆 × 𝑆) ↔ 𝑓 𝑓))
333, 6, 11, 32iserd 6555 . 2 (⊤ → Er (𝑆 × 𝑆))
3433mptru 1362 1 Er (𝑆 × 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wtru 1354  wex 1492  wcel 2148  wral 2455  cop 3594   class class class wbr 4000  {copab 4060   × cxp 4621  Rel wrel 4628  (class class class)co 5869   Er wer 6526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-iun 3886  df-br 4001  df-opab 4062  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fv 5220  df-ov 5872  df-er 6529
This theorem is referenced by:  enqer  7348  enrer  7725
  Copyright terms: Public domain W3C validator