![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpoexw | GIF version |
Description: Weak version of mpoex 6217 that holds without ax-coll 4120. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
Ref | Expression |
---|---|
mpoexw.1 | ⊢ 𝐴 ∈ V |
mpoexw.2 | ⊢ 𝐵 ∈ V |
mpoexw.3 | ⊢ 𝐷 ∈ V |
mpoexw.4 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 |
Ref | Expression |
---|---|
mpoexw | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpofun 5979 | . 2 ⊢ Fun (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
3 | mpoexw.4 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 | |
4 | 1 | dmmpoga 6211 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝐴 × 𝐵)) |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝐴 × 𝐵) |
6 | mpoexw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
7 | mpoexw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
8 | 6, 7 | xpex 4743 | . . 3 ⊢ (𝐴 × 𝐵) ∈ V |
9 | 5, 8 | eqeltri 2250 | . 2 ⊢ dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
10 | 1 | rnmpo 5987 | . . 3 ⊢ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
11 | mpoexw.3 | . . . 4 ⊢ 𝐷 ∈ V | |
12 | 3 | rspec 2529 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷) |
13 | 12 | r19.21bi 2565 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) |
14 | eleq1a 2249 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝐷 → (𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) | |
15 | 13, 14 | syl 14 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) |
16 | 15 | rexlimdva 2594 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) |
17 | 16 | rexlimiv 2588 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷) |
18 | 17 | abssi 3232 | . . . 4 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ⊆ 𝐷 |
19 | 11, 18 | ssexi 4143 | . . 3 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
20 | 10, 19 | eqeltri 2250 | . 2 ⊢ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
21 | funexw 6115 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∧ dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V ∧ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) | |
22 | 2, 9, 20, 21 | mp3an 1337 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 {cab 2163 ∀wral 2455 ∃wrex 2456 Vcvv 2739 × cxp 4626 dom cdm 4628 ran crn 4629 Fun wfun 5212 ∈ cmpo 5879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |