| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpoexw | GIF version | ||
| Description: Weak version of mpoex 6358 that holds without ax-coll 4198. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
| Ref | Expression |
|---|---|
| mpoexw.1 | ⊢ 𝐴 ∈ V |
| mpoexw.2 | ⊢ 𝐵 ∈ V |
| mpoexw.3 | ⊢ 𝐷 ∈ V |
| mpoexw.4 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 |
| Ref | Expression |
|---|---|
| mpoexw | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | mpofun 6105 | . 2 ⊢ Fun (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 3 | mpoexw.4 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 | |
| 4 | 1 | dmmpoga 6352 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝐴 × 𝐵)) |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝐴 × 𝐵) |
| 6 | mpoexw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 7 | mpoexw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 8 | 6, 7 | xpex 4833 | . . 3 ⊢ (𝐴 × 𝐵) ∈ V |
| 9 | 5, 8 | eqeltri 2302 | . 2 ⊢ dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| 10 | 1 | rnmpo 6114 | . . 3 ⊢ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
| 11 | mpoexw.3 | . . . 4 ⊢ 𝐷 ∈ V | |
| 12 | 3 | rspec 2582 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷) |
| 13 | 12 | r19.21bi 2618 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) |
| 14 | eleq1a 2301 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝐷 → (𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) | |
| 15 | 13, 14 | syl 14 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) |
| 16 | 15 | rexlimdva 2648 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) |
| 17 | 16 | rexlimiv 2642 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷) |
| 18 | 17 | abssi 3299 | . . . 4 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ⊆ 𝐷 |
| 19 | 11, 18 | ssexi 4221 | . . 3 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
| 20 | 10, 19 | eqeltri 2302 | . 2 ⊢ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| 21 | funexw 6255 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∧ dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V ∧ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) | |
| 22 | 2, 9, 20, 21 | mp3an 1371 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∃wrex 2509 Vcvv 2799 × cxp 4716 dom cdm 4718 ran crn 4719 Fun wfun 5311 ∈ cmpo 6002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 |
| This theorem is referenced by: prdsvallem 13300 |
| Copyright terms: Public domain | W3C validator |