ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoexw GIF version

Theorem mpoexw 6317
Description: Weak version of mpoex 6318 that holds without ax-coll 4170. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Hypotheses
Ref Expression
mpoexw.1 𝐴 ∈ V
mpoexw.2 𝐵 ∈ V
mpoexw.3 𝐷 ∈ V
mpoexw.4 𝑥𝐴𝑦𝐵 𝐶𝐷
Assertion
Ref Expression
mpoexw (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem mpoexw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . 3 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
21mpofun 6065 . 2 Fun (𝑥𝐴, 𝑦𝐵𝐶)
3 mpoexw.4 . . . 4 𝑥𝐴𝑦𝐵 𝐶𝐷
41dmmpoga 6312 . . . 4 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → dom (𝑥𝐴, 𝑦𝐵𝐶) = (𝐴 × 𝐵))
53, 4ax-mp 5 . . 3 dom (𝑥𝐴, 𝑦𝐵𝐶) = (𝐴 × 𝐵)
6 mpoexw.1 . . . 4 𝐴 ∈ V
7 mpoexw.2 . . . 4 𝐵 ∈ V
86, 7xpex 4803 . . 3 (𝐴 × 𝐵) ∈ V
95, 8eqeltri 2279 . 2 dom (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
101rnmpo 6074 . . 3 ran (𝑥𝐴, 𝑦𝐵𝐶) = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
11 mpoexw.3 . . . 4 𝐷 ∈ V
123rspec 2559 . . . . . . . . 9 (𝑥𝐴 → ∀𝑦𝐵 𝐶𝐷)
1312r19.21bi 2595 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → 𝐶𝐷)
14 eleq1a 2278 . . . . . . . 8 (𝐶𝐷 → (𝑧 = 𝐶𝑧𝐷))
1513, 14syl 14 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶𝑧𝐷))
1615rexlimdva 2624 . . . . . 6 (𝑥𝐴 → (∃𝑦𝐵 𝑧 = 𝐶𝑧𝐷))
1716rexlimiv 2618 . . . . 5 (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝑧𝐷)
1817abssi 3272 . . . 4 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ⊆ 𝐷
1911, 18ssexi 4193 . . 3 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ∈ V
2010, 19eqeltri 2279 . 2 ran (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
21 funexw 6215 . 2 ((Fun (𝑥𝐴, 𝑦𝐵𝐶) ∧ dom (𝑥𝐴, 𝑦𝐵𝐶) ∈ V ∧ ran (𝑥𝐴, 𝑦𝐵𝐶) ∈ V) → (𝑥𝐴, 𝑦𝐵𝐶) ∈ V)
222, 9, 20, 21mp3an 1350 1 (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {cab 2192  wral 2485  wrex 2486  Vcvv 2773   × cxp 4686  dom cdm 4688  ran crn 4689  Fun wfun 5279  cmpo 5964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245
This theorem is referenced by:  prdsvallem  13189
  Copyright terms: Public domain W3C validator