Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpoexw | GIF version |
Description: Weak version of mpoex 6193 that holds without ax-coll 4104. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
Ref | Expression |
---|---|
mpoexw.1 | ⊢ 𝐴 ∈ V |
mpoexw.2 | ⊢ 𝐵 ∈ V |
mpoexw.3 | ⊢ 𝐷 ∈ V |
mpoexw.4 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 |
Ref | Expression |
---|---|
mpoexw | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpofun 5955 | . 2 ⊢ Fun (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
3 | mpoexw.4 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 | |
4 | 1 | dmmpoga 6187 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝐴 × 𝐵)) |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝐴 × 𝐵) |
6 | mpoexw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
7 | mpoexw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
8 | 6, 7 | xpex 4726 | . . 3 ⊢ (𝐴 × 𝐵) ∈ V |
9 | 5, 8 | eqeltri 2243 | . 2 ⊢ dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
10 | 1 | rnmpo 5963 | . . 3 ⊢ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
11 | mpoexw.3 | . . . 4 ⊢ 𝐷 ∈ V | |
12 | 3 | rspec 2522 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷) |
13 | 12 | r19.21bi 2558 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) |
14 | eleq1a 2242 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝐷 → (𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) | |
15 | 13, 14 | syl 14 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) |
16 | 15 | rexlimdva 2587 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) |
17 | 16 | rexlimiv 2581 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷) |
18 | 17 | abssi 3222 | . . . 4 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ⊆ 𝐷 |
19 | 11, 18 | ssexi 4127 | . . 3 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
20 | 10, 19 | eqeltri 2243 | . 2 ⊢ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
21 | funexw 6091 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∧ dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V ∧ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) | |
22 | 2, 9, 20, 21 | mp3an 1332 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {cab 2156 ∀wral 2448 ∃wrex 2449 Vcvv 2730 × cxp 4609 dom cdm 4611 ran crn 4612 Fun wfun 5192 ∈ cmpo 5855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |