![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbbidv | GIF version |
Description: Deduction substituting both sides of a biconditional, with 𝜑 and 𝑥 disjoint. See also sbbid 1857. (Contributed by Wolf Lammen, 6-May-2023.) (Proof shortened by Steven Nguyen, 6-Jul-2023.) |
Ref | Expression |
---|---|
sbbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbbidv | ⊢ (𝜑 → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1885 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | spsbbi 1855 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑥]𝜒)) | |
4 | 2, 3 | syl 14 | 1 ⊢ (𝜑 → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑥]𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 [wsb 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-sb 1774 |
This theorem is referenced by: eqabdv 2322 |
Copyright terms: Public domain | W3C validator |