ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbbidv GIF version

Theorem sbbidv 1896
Description: Deduction substituting both sides of a biconditional, with 𝜑 and 𝑥 disjoint. See also sbbid 1857. (Contributed by Wolf Lammen, 6-May-2023.) (Proof shortened by Steven Nguyen, 6-Jul-2023.)
Hypothesis
Ref Expression
sbbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbbidv (𝜑 → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑥]𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝜓(𝑥,𝑡)   𝜒(𝑥,𝑡)

Proof of Theorem sbbidv
StepHypRef Expression
1 sbbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimiv 1885 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
3 spsbbi 1855 . 2 (∀𝑥(𝜓𝜒) → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑥]𝜒))
42, 3syl 14 1 (𝜑 → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑥]𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-sb 1774
This theorem is referenced by:  eqabdv  2322
  Copyright terms: Public domain W3C validator