| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqabdv | GIF version | ||
| Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Revised by Wolf Lammen, 6-May-2023.) |
| Ref | Expression |
|---|---|
| eqabdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| eqabdv | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabdv.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | |
| 2 | 1 | sbbidv 1931 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝜓)) |
| 3 | clelsb1 2334 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 4 | 3 | bicomi 132 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
| 5 | df-clab 2216 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 6 | 2, 4, 5 | 3bitr4g 223 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
| 7 | 6 | eqrdv 2227 | 1 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 [wsb 1808 ∈ wcel 2200 {cab 2215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: wrdval 11069 wrdnval 11097 dfrhm2 14112 rspsn 14492 |
| Copyright terms: Public domain | W3C validator |