ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqabdv GIF version

Theorem eqabdv 2333
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Revised by Wolf Lammen, 6-May-2023.)
Hypothesis
Ref Expression
eqabdv.1 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
eqabdv (𝜑𝐴 = {𝑥𝜓})
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem eqabdv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqabdv.1 . . . 4 (𝜑 → (𝑥𝐴𝜓))
21sbbidv 1907 . . 3 (𝜑 → ([𝑦 / 𝑥]𝑥𝐴 ↔ [𝑦 / 𝑥]𝜓))
3 clelsb1 2309 . . . 4 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
43bicomi 132 . . 3 (𝑦𝐴 ↔ [𝑦 / 𝑥]𝑥𝐴)
5 df-clab 2191 . . 3 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
62, 4, 53bitr4g 223 . 2 (𝜑 → (𝑦𝐴𝑦 ∈ {𝑥𝜓}))
76eqrdv 2202 1 (𝜑𝐴 = {𝑥𝜓})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  [wsb 1784  wcel 2175  {cab 2190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200
This theorem is referenced by:  wrdval  10972  wrdnval  10999  dfrhm2  13834  rspsn  14214
  Copyright terms: Public domain W3C validator