Proof of Theorem sbel2x
| Step | Hyp | Ref
 | Expression | 
| 1 |   | sbelx 2016 | 
. . . . 5
⊢ ([𝑥 / 𝑧]𝜑 ↔ ∃𝑦(𝑦 = 𝑤 ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) | 
| 2 | 1 | anbi2i 457 | 
. . . 4
⊢ ((𝑥 = 𝑧 ∧ [𝑥 / 𝑧]𝜑) ↔ (𝑥 = 𝑧 ∧ ∃𝑦(𝑦 = 𝑤 ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑))) | 
| 3 | 2 | exbii 1619 | 
. . 3
⊢
(∃𝑥(𝑥 = 𝑧 ∧ [𝑥 / 𝑧]𝜑) ↔ ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦(𝑦 = 𝑤 ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑))) | 
| 4 |   | sbelx 2016 | 
. . 3
⊢ (𝜑 ↔ ∃𝑥(𝑥 = 𝑧 ∧ [𝑥 / 𝑧]𝜑)) | 
| 5 |   | exdistr 1924 | 
. . 3
⊢
(∃𝑥∃𝑦(𝑥 = 𝑧 ∧ (𝑦 = 𝑤 ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) ↔ ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦(𝑦 = 𝑤 ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑))) | 
| 6 | 3, 4, 5 | 3bitr4i 212 | 
. 2
⊢ (𝜑 ↔ ∃𝑥∃𝑦(𝑥 = 𝑧 ∧ (𝑦 = 𝑤 ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑))) | 
| 7 |   | anass 401 | 
. . 3
⊢ (((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑) ↔ (𝑥 = 𝑧 ∧ (𝑦 = 𝑤 ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑))) | 
| 8 | 7 | 2exbii 1620 | 
. 2
⊢
(∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑) ↔ ∃𝑥∃𝑦(𝑥 = 𝑧 ∧ (𝑦 = 𝑤 ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑))) | 
| 9 | 6, 8 | bitr4i 187 | 
1
⊢ (𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) |