Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sb5rf | GIF version |
Description: Reversed substitution. (Contributed by NM, 3-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
sb5rf.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
Ref | Expression |
---|---|
sb5rf | ⊢ (𝜑 ↔ ∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb5rf.1 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | 1 | sbid2h 1842 | . . 3 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ 𝜑) |
3 | sb1 1759 | . . 3 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑 → ∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑)) | |
4 | 2, 3 | sylbir 134 | . 2 ⊢ (𝜑 → ∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑)) |
5 | stdpc7 1763 | . . . 4 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
6 | 5 | imp 123 | . . 3 ⊢ ((𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑) → 𝜑) |
7 | 1, 6 | exlimih 1586 | . 2 ⊢ (∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑) → 𝜑) |
8 | 4, 7 | impbii 125 | 1 ⊢ (𝜑 ↔ ∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1346 ∃wex 1485 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-sb 1756 |
This theorem is referenced by: 2sb5rf 1982 sbelx 1990 |
Copyright terms: Public domain | W3C validator |