| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sb5rf | GIF version | ||
| Description: Reversed substitution. (Contributed by NM, 3-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| sb5rf.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
| Ref | Expression |
|---|---|
| sb5rf | ⊢ (𝜑 ↔ ∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb5rf.1 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | 1 | sbid2h 1863 | . . 3 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| 3 | sb1 1780 | . . 3 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑 → ∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑)) | |
| 4 | 2, 3 | sylbir 135 | . 2 ⊢ (𝜑 → ∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑)) |
| 5 | stdpc7 1784 | . . . 4 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
| 6 | 5 | imp 124 | . . 3 ⊢ ((𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑) → 𝜑) |
| 7 | 1, 6 | exlimih 1607 | . 2 ⊢ (∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑) → 𝜑) |
| 8 | 4, 7 | impbii 126 | 1 ⊢ (𝜑 ↔ ∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 |
| This theorem is referenced by: 2sb5rf 2008 sbelx 2016 |
| Copyright terms: Public domain | W3C validator |