ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbiedh GIF version

Theorem sbiedh 1767
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbieh 1770). New proofs should use sbied 1768 instead. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
sbiedh.1 (𝜑 → ∀𝑥𝜑)
sbiedh.2 (𝜑 → (𝜒 → ∀𝑥𝜒))
sbiedh.3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
sbiedh (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))

Proof of Theorem sbiedh
StepHypRef Expression
1 sb1 1746 . . . 4 ([𝑦 / 𝑥]𝜓 → ∃𝑥(𝑥 = 𝑦𝜓))
2 sbiedh.1 . . . . 5 (𝜑 → ∀𝑥𝜑)
3 sbiedh.3 . . . . . . 7 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
4 biimp 117 . . . . . . 7 ((𝜓𝜒) → (𝜓𝜒))
53, 4syl6 33 . . . . . 6 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
65impd 252 . . . . 5 (𝜑 → ((𝑥 = 𝑦𝜓) → 𝜒))
72, 6eximdh 1591 . . . 4 (𝜑 → (∃𝑥(𝑥 = 𝑦𝜓) → ∃𝑥𝜒))
81, 7syl5 32 . . 3 (𝜑 → ([𝑦 / 𝑥]𝜓 → ∃𝑥𝜒))
9 sbiedh.2 . . . 4 (𝜑 → (𝜒 → ∀𝑥𝜒))
102, 919.9hd 1642 . . 3 (𝜑 → (∃𝑥𝜒𝜒))
118, 10syld 45 . 2 (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
12 biimpr 129 . . . . . . 7 ((𝜓𝜒) → (𝜒𝜓))
133, 12syl6 33 . . . . . 6 (𝜑 → (𝑥 = 𝑦 → (𝜒𝜓)))
1413com23 78 . . . . 5 (𝜑 → (𝜒 → (𝑥 = 𝑦𝜓)))
152, 14alimdh 1447 . . . 4 (𝜑 → (∀𝑥𝜒 → ∀𝑥(𝑥 = 𝑦𝜓)))
16 sb2 1747 . . . 4 (∀𝑥(𝑥 = 𝑦𝜓) → [𝑦 / 𝑥]𝜓)
1715, 16syl6 33 . . 3 (𝜑 → (∀𝑥𝜒 → [𝑦 / 𝑥]𝜓))
189, 17syld 45 . 2 (𝜑 → (𝜒 → [𝑦 / 𝑥]𝜓))
1911, 18impbid 128 1 (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1333  wex 1472  [wsb 1742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-i9 1510  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-sb 1743
This theorem is referenced by:  sbied  1768  sbieh  1770  sbcomxyyz  1952
  Copyright terms: Public domain W3C validator