ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbiedh GIF version

Theorem sbiedh 1717
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbieh 1720). New proofs should use sbied 1718 instead. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
sbiedh.1 (𝜑 → ∀𝑥𝜑)
sbiedh.2 (𝜑 → (𝜒 → ∀𝑥𝜒))
sbiedh.3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
sbiedh (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))

Proof of Theorem sbiedh
StepHypRef Expression
1 sb1 1696 . . . 4 ([𝑦 / 𝑥]𝜓 → ∃𝑥(𝑥 = 𝑦𝜓))
2 sbiedh.1 . . . . 5 (𝜑 → ∀𝑥𝜑)
3 sbiedh.3 . . . . . . 7 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
4 bi1 116 . . . . . . 7 ((𝜓𝜒) → (𝜓𝜒))
53, 4syl6 33 . . . . . 6 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
65impd 251 . . . . 5 (𝜑 → ((𝑥 = 𝑦𝜓) → 𝜒))
72, 6eximdh 1547 . . . 4 (𝜑 → (∃𝑥(𝑥 = 𝑦𝜓) → ∃𝑥𝜒))
81, 7syl5 32 . . 3 (𝜑 → ([𝑦 / 𝑥]𝜓 → ∃𝑥𝜒))
9 sbiedh.2 . . . 4 (𝜑 → (𝜒 → ∀𝑥𝜒))
102, 919.9hd 1597 . . 3 (𝜑 → (∃𝑥𝜒𝜒))
118, 10syld 44 . 2 (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
12 bi2 128 . . . . . . 7 ((𝜓𝜒) → (𝜒𝜓))
133, 12syl6 33 . . . . . 6 (𝜑 → (𝑥 = 𝑦 → (𝜒𝜓)))
1413com23 77 . . . . 5 (𝜑 → (𝜒 → (𝑥 = 𝑦𝜓)))
152, 14alimdh 1401 . . . 4 (𝜑 → (∀𝑥𝜒 → ∀𝑥(𝑥 = 𝑦𝜓)))
16 sb2 1697 . . . 4 (∀𝑥(𝑥 = 𝑦𝜓) → [𝑦 / 𝑥]𝜓)
1715, 16syl6 33 . . 3 (𝜑 → (∀𝑥𝜒 → [𝑦 / 𝑥]𝜓))
189, 17syld 44 . 2 (𝜑 → (𝜒 → [𝑦 / 𝑥]𝜓))
1911, 18impbid 127 1 (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1287  wex 1426  [wsb 1692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-i9 1468  ax-ial 1472
This theorem depends on definitions:  df-bi 115  df-sb 1693
This theorem is referenced by:  sbied  1718  sbieh  1720  sbcomxyyz  1894
  Copyright terms: Public domain W3C validator