Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvelimdf | GIF version |
Description: Deduction form of dvelimf 2008. This version may be useful if we want to avoid ax-17 1519 and use ax-16 1807 instead. (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) |
Ref | Expression |
---|---|
dvelimdf.1 | ⊢ Ⅎ𝑥𝜑 |
dvelimdf.2 | ⊢ Ⅎ𝑧𝜑 |
dvelimdf.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
dvelimdf.4 | ⊢ (𝜑 → Ⅎ𝑧𝜒) |
dvelimdf.5 | ⊢ (𝜑 → (𝑧 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
dvelimdf | ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvelimdf.2 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
2 | dvelimdf.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
3 | 1, 2 | alrimi 1515 | . . 3 ⊢ (𝜑 → ∀𝑧Ⅎ𝑥𝜓) |
4 | nfsb4t 2007 | . . 3 ⊢ (∀𝑧Ⅎ𝑥𝜓 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑧]𝜓)) | |
5 | 3, 4 | syl 14 | . 2 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑧]𝜓)) |
6 | dvelimdf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
7 | dvelimdf.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑧𝜒) | |
8 | dvelimdf.5 | . . . 4 ⊢ (𝜑 → (𝑧 = 𝑦 → (𝜓 ↔ 𝜒))) | |
9 | 1, 7, 8 | sbied 1781 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑧]𝜓 ↔ 𝜒)) |
10 | 6, 9 | nfbidf 1532 | . 2 ⊢ (𝜑 → (Ⅎ𝑥[𝑦 / 𝑧]𝜓 ↔ Ⅎ𝑥𝜒)) |
11 | 5, 10 | sylibd 148 | 1 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∀wal 1346 Ⅎwnf 1453 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 |
This theorem is referenced by: dvelimdc 2333 |
Copyright terms: Public domain | W3C validator |