| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvelimdf | GIF version | ||
| Description: Deduction form of dvelimf 2044. This version may be useful if we want to avoid ax-17 1550 and use ax-16 1838 instead. (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) |
| Ref | Expression |
|---|---|
| dvelimdf.1 | ⊢ Ⅎ𝑥𝜑 |
| dvelimdf.2 | ⊢ Ⅎ𝑧𝜑 |
| dvelimdf.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| dvelimdf.4 | ⊢ (𝜑 → Ⅎ𝑧𝜒) |
| dvelimdf.5 | ⊢ (𝜑 → (𝑧 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| dvelimdf | ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimdf.2 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 2 | dvelimdf.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | 1, 2 | alrimi 1546 | . . 3 ⊢ (𝜑 → ∀𝑧Ⅎ𝑥𝜓) |
| 4 | nfsb4t 2043 | . . 3 ⊢ (∀𝑧Ⅎ𝑥𝜓 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑧]𝜓)) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑧]𝜓)) |
| 6 | dvelimdf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 7 | dvelimdf.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑧𝜒) | |
| 8 | dvelimdf.5 | . . . 4 ⊢ (𝜑 → (𝑧 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 9 | 1, 7, 8 | sbied 1812 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑧]𝜓 ↔ 𝜒)) |
| 10 | 6, 9 | nfbidf 1563 | . 2 ⊢ (𝜑 → (Ⅎ𝑥[𝑦 / 𝑧]𝜓 ↔ Ⅎ𝑥𝜒)) |
| 11 | 5, 10 | sylibd 149 | 1 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1371 Ⅎwnf 1484 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: dvelimdc 2370 |
| Copyright terms: Public domain | W3C validator |