ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimdf GIF version

Theorem dvelimdf 2035
Description: Deduction form of dvelimf 2034. This version may be useful if we want to avoid ax-17 1540 and use ax-16 1828 instead. (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.)
Hypotheses
Ref Expression
dvelimdf.1 𝑥𝜑
dvelimdf.2 𝑧𝜑
dvelimdf.3 (𝜑 → Ⅎ𝑥𝜓)
dvelimdf.4 (𝜑 → Ⅎ𝑧𝜒)
dvelimdf.5 (𝜑 → (𝑧 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
dvelimdf (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒))

Proof of Theorem dvelimdf
StepHypRef Expression
1 dvelimdf.2 . . . 4 𝑧𝜑
2 dvelimdf.3 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
31, 2alrimi 1536 . . 3 (𝜑 → ∀𝑧𝑥𝜓)
4 nfsb4t 2033 . . 3 (∀𝑧𝑥𝜓 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑧]𝜓))
53, 4syl 14 . 2 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑧]𝜓))
6 dvelimdf.1 . . 3 𝑥𝜑
7 dvelimdf.4 . . . 4 (𝜑 → Ⅎ𝑧𝜒)
8 dvelimdf.5 . . . 4 (𝜑 → (𝑧 = 𝑦 → (𝜓𝜒)))
91, 7, 8sbied 1802 . . 3 (𝜑 → ([𝑦 / 𝑧]𝜓𝜒))
106, 9nfbidf 1553 . 2 (𝜑 → (Ⅎ𝑥[𝑦 / 𝑧]𝜓 ↔ Ⅎ𝑥𝜒))
115, 10sylibd 149 1 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wal 1362  wnf 1474  [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777
This theorem is referenced by:  dvelimdc  2360
  Copyright terms: Public domain W3C validator