Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbco2v | GIF version |
Description: Version of sbco2 1945 with disjoint variable conditions. (Contributed by Wolf Lammen, 29-Apr-2023.) |
Ref | Expression |
---|---|
sbco2v.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
sbco2v | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco2v.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | nfsbv 1927 | . 2 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
3 | sbequ 1820 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
4 | 2, 3 | sbiev 1772 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 Ⅎwnf 1440 [wsb 1742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |