ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvabw GIF version

Theorem cbvabw 2328
Description: Version of cbvab 2329 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
Hypotheses
Ref Expression
cbvabw.1 𝑦𝜑
cbvabw.2 𝑥𝜓
cbvabw.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvabw {𝑥𝜑} = {𝑦𝜓}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvabw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvabw.1 . . . . . 6 𝑦𝜑
21nfsbv 1975 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
3 equequ2 1736 . . . . . . . 8 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
43imbi1d 231 . . . . . . 7 (𝑦 = 𝑧 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑧𝜑)))
54albidv 1847 . . . . . 6 (𝑦 = 𝑧 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑧𝜑)))
6 sb6 1910 . . . . . 6 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
7 sb6 1910 . . . . . 6 ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑧𝜑))
85, 6, 73bitr4g 223 . . . . 5 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
92, 8sbiev 1815 . . . 4 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
10 cbvabw.2 . . . . . 6 𝑥𝜓
11 cbvabw.3 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
1210, 11sbiev 1815 . . . . 5 ([𝑦 / 𝑥]𝜑𝜓)
1312sbbii 1788 . . . 4 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)
149, 13bitr3i 186 . . 3 ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)
15 df-clab 2192 . . 3 (𝑧 ∈ {𝑥𝜑} ↔ [𝑧 / 𝑥]𝜑)
16 df-clab 2192 . . 3 (𝑧 ∈ {𝑦𝜓} ↔ [𝑧 / 𝑦]𝜓)
1714, 15, 163bitr4i 212 . 2 (𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜓})
1817eqriv 2202 1 {𝑥𝜑} = {𝑦𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371   = wceq 1373  wnf 1483  [wsb 1785  wcel 2176  {cab 2191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198
This theorem is referenced by:  cbvsbcw  3026
  Copyright terms: Public domain W3C validator