| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvabw | GIF version | ||
| Description: Version of cbvab 2320 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.) |
| Ref | Expression |
|---|---|
| cbvabw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvabw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvabw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvabw | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvabw.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfsbv 1966 | . . . . 5 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
| 3 | equequ2 1727 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) | |
| 4 | 3 | imbi1d 231 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑧 → 𝜑))) |
| 5 | 4 | albidv 1838 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| 6 | sb6 1901 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 7 | sb6 1901 | . . . . . 6 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → 𝜑)) | |
| 8 | 5, 6, 7 | 3bitr4g 223 | . . . . 5 ⊢ (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
| 9 | 2, 8 | sbiev 1806 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
| 10 | cbvabw.2 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
| 11 | cbvabw.3 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 12 | 10, 11 | sbiev 1806 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 13 | 12 | sbbii 1779 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
| 14 | 9, 13 | bitr3i 186 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
| 15 | df-clab 2183 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
| 16 | df-clab 2183 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 17 | 14, 15, 16 | 3bitr4i 212 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 18 | 17 | eqriv 2193 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 [wsb 1776 ∈ wcel 2167 {cab 2182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 |
| This theorem is referenced by: cbvsbcw 3017 |
| Copyright terms: Public domain | W3C validator |