Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvabw | GIF version |
Description: Version of cbvab 2294 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.) |
Ref | Expression |
---|---|
cbvabw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvabw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvabw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvabw | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvabw.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfsbv 1940 | . . . . 5 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
3 | equequ2 1706 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) | |
4 | 3 | imbi1d 230 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑧 → 𝜑))) |
5 | 4 | albidv 1817 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
6 | sb6 1879 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
7 | sb6 1879 | . . . . . 6 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → 𝜑)) | |
8 | 5, 6, 7 | 3bitr4g 222 | . . . . 5 ⊢ (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
9 | 2, 8 | sbiev 1785 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
10 | cbvabw.2 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
11 | cbvabw.3 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
12 | 10, 11 | sbiev 1785 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
13 | 12 | sbbii 1758 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
14 | 9, 13 | bitr3i 185 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
15 | df-clab 2157 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
16 | df-clab 2157 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
17 | 14, 15, 16 | 3bitr4i 211 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
18 | 17 | eqriv 2167 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 = wceq 1348 Ⅎwnf 1453 [wsb 1755 ∈ wcel 2141 {cab 2156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 |
This theorem is referenced by: cbvsbcw 2982 |
Copyright terms: Public domain | W3C validator |