ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvabw GIF version

Theorem cbvabw 2298
Description: Version of cbvab 2299 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.)
Hypotheses
Ref Expression
cbvabw.1 𝑦𝜑
cbvabw.2 𝑥𝜓
cbvabw.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvabw {𝑥𝜑} = {𝑦𝜓}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvabw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvabw.1 . . . . . 6 𝑦𝜑
21nfsbv 1945 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
3 equequ2 1711 . . . . . . . 8 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
43imbi1d 231 . . . . . . 7 (𝑦 = 𝑧 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑧𝜑)))
54albidv 1822 . . . . . 6 (𝑦 = 𝑧 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑧𝜑)))
6 sb6 1884 . . . . . 6 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
7 sb6 1884 . . . . . 6 ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑧𝜑))
85, 6, 73bitr4g 223 . . . . 5 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
92, 8sbiev 1790 . . . 4 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
10 cbvabw.2 . . . . . 6 𝑥𝜓
11 cbvabw.3 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
1210, 11sbiev 1790 . . . . 5 ([𝑦 / 𝑥]𝜑𝜓)
1312sbbii 1763 . . . 4 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)
149, 13bitr3i 186 . . 3 ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)
15 df-clab 2162 . . 3 (𝑧 ∈ {𝑥𝜑} ↔ [𝑧 / 𝑥]𝜑)
16 df-clab 2162 . . 3 (𝑧 ∈ {𝑦𝜓} ↔ [𝑧 / 𝑦]𝜓)
1714, 15, 163bitr4i 212 . 2 (𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜓})
1817eqriv 2172 1 {𝑥𝜑} = {𝑦𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351   = wceq 1353  wnf 1458  [wsb 1760  wcel 2146  {cab 2161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168
This theorem is referenced by:  cbvsbcw  2988
  Copyright terms: Public domain W3C validator