| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-csb 3085 | 
. . . . . 6
⊢
⦋𝑦 /
𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | 
| 2 | 1 | abeq2i 2307 | 
. . . . 5
⊢ (𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵 ↔ [𝑦 / 𝑥]𝑧 ∈ 𝐵) | 
| 3 | 2 | sbcbii 3049 | 
. . . 4
⊢
([𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵 ↔ [𝐴 / 𝑦][𝑦 / 𝑥]𝑧 ∈ 𝐵) | 
| 4 |   | nfv 1542 | 
. . . . . . . . . 10
⊢
Ⅎ𝑦∀𝑥(𝑥 = 𝑤 → 𝑧 ∈ 𝐵) | 
| 5 |   | equequ2 1727 | 
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑤)) | 
| 6 | 5 | imbi1d 231 | 
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → ((𝑥 = 𝑦 → 𝑧 ∈ 𝐵) ↔ (𝑥 = 𝑤 → 𝑧 ∈ 𝐵))) | 
| 7 | 6 | albidv 1838 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝑤 → 𝑧 ∈ 𝐵))) | 
| 8 | 4, 7 | sbiev 1806 | 
. . . . . . . . 9
⊢ ([𝑤 / 𝑦]∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝑤 → 𝑧 ∈ 𝐵)) | 
| 9 |   | sb6 1901 | 
. . . . . . . . 9
⊢ ([𝑤 / 𝑥]𝑧 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝑤 → 𝑧 ∈ 𝐵)) | 
| 10 | 8, 9 | bitr4i 187 | 
. . . . . . . 8
⊢ ([𝑤 / 𝑦]∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝐵) ↔ [𝑤 / 𝑥]𝑧 ∈ 𝐵) | 
| 11 |   | df-clab 2183 | 
. . . . . . . 8
⊢ (𝑤 ∈ {𝑦 ∣ ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝐵)} ↔ [𝑤 / 𝑦]∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝐵)) | 
| 12 |   | df-clab 2183 | 
. . . . . . . 8
⊢ (𝑤 ∈ {𝑥 ∣ 𝑧 ∈ 𝐵} ↔ [𝑤 / 𝑥]𝑧 ∈ 𝐵) | 
| 13 | 10, 11, 12 | 3bitr4i 212 | 
. . . . . . 7
⊢ (𝑤 ∈ {𝑦 ∣ ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝐵)} ↔ 𝑤 ∈ {𝑥 ∣ 𝑧 ∈ 𝐵}) | 
| 14 | 13 | eqriv 2193 | 
. . . . . 6
⊢ {𝑦 ∣ ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝐵)} = {𝑥 ∣ 𝑧 ∈ 𝐵} | 
| 15 | 14 | eleq2i 2263 | 
. . . . 5
⊢ (𝐴 ∈ {𝑦 ∣ ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝐵)} ↔ 𝐴 ∈ {𝑥 ∣ 𝑧 ∈ 𝐵}) | 
| 16 |   | df-sbc 2990 | 
. . . . . 6
⊢
([𝐴 / 𝑦][𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝐴 ∈ {𝑦 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵}) | 
| 17 |   | df-sbc 2990 | 
. . . . . . . . 9
⊢
([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑦 ∈ {𝑥 ∣ 𝑧 ∈ 𝐵}) | 
| 18 |   | df-clab 2183 | 
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑥 ∣ 𝑧 ∈ 𝐵} ↔ [𝑦 / 𝑥]𝑧 ∈ 𝐵) | 
| 19 |   | sb6 1901 | 
. . . . . . . . . 10
⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝐵)) | 
| 20 | 18, 19 | bitri 184 | 
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑥 ∣ 𝑧 ∈ 𝐵} ↔ ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝐵)) | 
| 21 | 17, 20 | bitri 184 | 
. . . . . . . 8
⊢
([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝐵)) | 
| 22 | 21 | abbii 2312 | 
. . . . . . 7
⊢ {𝑦 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑦 ∣ ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝐵)} | 
| 23 | 22 | eleq2i 2263 | 
. . . . . 6
⊢ (𝐴 ∈ {𝑦 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} ↔ 𝐴 ∈ {𝑦 ∣ ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝐵)}) | 
| 24 | 16, 23 | bitri 184 | 
. . . . 5
⊢
([𝐴 / 𝑦][𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝐴 ∈ {𝑦 ∣ ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝐵)}) | 
| 25 |   | df-sbc 2990 | 
. . . . 5
⊢
([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝑧 ∈ 𝐵}) | 
| 26 | 15, 24, 25 | 3bitr4i 212 | 
. . . 4
⊢
([𝐴 / 𝑦][𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵) | 
| 27 | 3, 26 | bitri 184 | 
. . 3
⊢
([𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵) | 
| 28 | 27 | abbii 2312 | 
. 2
⊢ {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵} = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} | 
| 29 |   | df-csb 3085 | 
. 2
⊢
⦋𝐴 /
𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵} | 
| 30 |   | df-csb 3085 | 
. 2
⊢
⦋𝐴 /
𝑥⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} | 
| 31 | 28, 29, 30 | 3eqtr4i 2227 | 
1
⊢
⦋𝐴 /
𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 |