ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsb1 GIF version

Theorem equsb1 1765
Description: Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equsb1 [𝑦 / 𝑥]𝑥 = 𝑦

Proof of Theorem equsb1
StepHypRef Expression
1 sb2 1747 . 2 (∀𝑥(𝑥 = 𝑦𝑥 = 𝑦) → [𝑦 / 𝑥]𝑥 = 𝑦)
2 id 19 . 2 (𝑥 = 𝑦𝑥 = 𝑦)
31, 2mpg 1431 1 [𝑦 / 𝑥]𝑥 = 𝑦
Colors of variables: wff set class
Syntax hints:  wi 4  [wsb 1742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-i9 1510  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-sb 1743
This theorem is referenced by:  sbcocom  1950  elsb3  2135  elsb4  2136  pm13.183  2850  exss  4186  relelfvdm  5497
  Copyright terms: Public domain W3C validator