ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enumct GIF version

Theorem enumct 7134
Description: A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as 𝑛 ∈ ω∃𝑓𝑓:𝑛onto𝐴 per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as 𝑔𝑔:ω–onto→(𝐴 ⊔ 1o) per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
enumct (∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
Distinct variable group:   𝐴,𝑓,𝑔,𝑛

Proof of Theorem enumct
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ 𝑛 = ∅) → 𝑓:𝑛onto𝐴)
2 foeq2 5451 . . . . . . . . . 10 (𝑛 = ∅ → (𝑓:𝑛onto𝐴𝑓:∅–onto𝐴))
32adantl 277 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ 𝑛 = ∅) → (𝑓:𝑛onto𝐴𝑓:∅–onto𝐴))
41, 3mpbid 147 . . . . . . . 8 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ 𝑛 = ∅) → 𝑓:∅–onto𝐴)
5 fo00 5513 . . . . . . . 8 (𝑓:∅–onto𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
64, 5sylib 122 . . . . . . 7 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ 𝑛 = ∅) → (𝑓 = ∅ ∧ 𝐴 = ∅))
7 0ct 7126 . . . . . . . 8 𝑔 𝑔:ω–onto→(∅ ⊔ 1o)
8 djueq1 7059 . . . . . . . . . 10 (𝐴 = ∅ → (𝐴 ⊔ 1o) = (∅ ⊔ 1o))
9 foeq3 5452 . . . . . . . . . 10 ((𝐴 ⊔ 1o) = (∅ ⊔ 1o) → (𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(∅ ⊔ 1o)))
108, 9syl 14 . . . . . . . . 9 (𝐴 = ∅ → (𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(∅ ⊔ 1o)))
1110exbidv 1836 . . . . . . . 8 (𝐴 = ∅ → (∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(∅ ⊔ 1o)))
127, 11mpbiri 168 . . . . . . 7 (𝐴 = ∅ → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
136, 12simpl2im 386 . . . . . 6 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ 𝑛 = ∅) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
14 omex 4607 . . . . . . . . 9 ω ∈ V
1514mptex 5759 . . . . . . . 8 (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))) ∈ V
16 simpll 527 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → 𝑓:𝑛onto𝐴)
17 simplr 528 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → 𝑛 ∈ ω)
18 simpr 110 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → ∅ ∈ 𝑛)
19 eqid 2189 . . . . . . . . 9 (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))) = (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅)))
2016, 17, 18, 19enumctlemm 7133 . . . . . . . 8 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))):ω–onto𝐴)
21 foeq1 5450 . . . . . . . . 9 (𝑔 = (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))) → (𝑔:ω–onto𝐴 ↔ (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))):ω–onto𝐴))
2221spcegv 2840 . . . . . . . 8 ((𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))) ∈ V → ((𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))):ω–onto𝐴 → ∃𝑔 𝑔:ω–onto𝐴))
2315, 20, 22mpsyl 65 . . . . . . 7 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → ∃𝑔 𝑔:ω–onto𝐴)
24 fof 5454 . . . . . . . . . . 11 (𝑓:𝑛onto𝐴𝑓:𝑛𝐴)
2524ad2antrr 488 . . . . . . . . . 10 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → 𝑓:𝑛𝐴)
2625, 18ffvelcdmd 5669 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → (𝑓‘∅) ∈ 𝐴)
27 eleq1 2252 . . . . . . . . . 10 (𝑥 = (𝑓‘∅) → (𝑥𝐴 ↔ (𝑓‘∅) ∈ 𝐴))
2827spcegv 2840 . . . . . . . . 9 ((𝑓‘∅) ∈ 𝐴 → ((𝑓‘∅) ∈ 𝐴 → ∃𝑥 𝑥𝐴))
2926, 26, 28sylc 62 . . . . . . . 8 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → ∃𝑥 𝑥𝐴)
30 ctm 7128 . . . . . . . 8 (∃𝑥 𝑥𝐴 → (∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto𝐴))
3129, 30syl 14 . . . . . . 7 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → (∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto𝐴))
3223, 31mpbird 167 . . . . . 6 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
33 0elnn 4633 . . . . . . 7 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∅ ∈ 𝑛))
3433adantl 277 . . . . . 6 ((𝑓:𝑛onto𝐴𝑛 ∈ ω) → (𝑛 = ∅ ∨ ∅ ∈ 𝑛))
3513, 32, 34mpjaodan 799 . . . . 5 ((𝑓:𝑛onto𝐴𝑛 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
3635ex 115 . . . 4 (𝑓:𝑛onto𝐴 → (𝑛 ∈ ω → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)))
3736exlimiv 1609 . . 3 (∃𝑓 𝑓:𝑛onto𝐴 → (𝑛 ∈ ω → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)))
3837impcom 125 . 2 ((𝑛 ∈ ω ∧ ∃𝑓 𝑓:𝑛onto𝐴) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
3938rexlimiva 2602 1 (∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1503  wcel 2160  wrex 2469  Vcvv 2752  c0 3437  ifcif 3549  cmpt 4079  ωcom 4604  wf 5228  ontowfo 5230  cfv 5232  1oc1o 6429  cdju 7056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-1st 6160  df-2nd 6161  df-1o 6436  df-dju 7057  df-inl 7066  df-inr 7067  df-case 7103
This theorem is referenced by:  finct  7135
  Copyright terms: Public domain W3C validator