ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enumct GIF version

Theorem enumct 7114
Description: A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as 𝑛 ∈ ω∃𝑓𝑓:𝑛onto𝐴 per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as 𝑔𝑔:ω–onto→(𝐴 ⊔ 1o) per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
enumct (∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
Distinct variable group:   𝐴,𝑓,𝑔,𝑛

Proof of Theorem enumct
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ 𝑛 = ∅) → 𝑓:𝑛onto𝐴)
2 foeq2 5436 . . . . . . . . . 10 (𝑛 = ∅ → (𝑓:𝑛onto𝐴𝑓:∅–onto𝐴))
32adantl 277 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ 𝑛 = ∅) → (𝑓:𝑛onto𝐴𝑓:∅–onto𝐴))
41, 3mpbid 147 . . . . . . . 8 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ 𝑛 = ∅) → 𝑓:∅–onto𝐴)
5 fo00 5498 . . . . . . . 8 (𝑓:∅–onto𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
64, 5sylib 122 . . . . . . 7 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ 𝑛 = ∅) → (𝑓 = ∅ ∧ 𝐴 = ∅))
7 0ct 7106 . . . . . . . 8 𝑔 𝑔:ω–onto→(∅ ⊔ 1o)
8 djueq1 7039 . . . . . . . . . 10 (𝐴 = ∅ → (𝐴 ⊔ 1o) = (∅ ⊔ 1o))
9 foeq3 5437 . . . . . . . . . 10 ((𝐴 ⊔ 1o) = (∅ ⊔ 1o) → (𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(∅ ⊔ 1o)))
108, 9syl 14 . . . . . . . . 9 (𝐴 = ∅ → (𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(∅ ⊔ 1o)))
1110exbidv 1825 . . . . . . . 8 (𝐴 = ∅ → (∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(∅ ⊔ 1o)))
127, 11mpbiri 168 . . . . . . 7 (𝐴 = ∅ → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
136, 12simpl2im 386 . . . . . 6 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ 𝑛 = ∅) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
14 omex 4593 . . . . . . . . 9 ω ∈ V
1514mptex 5743 . . . . . . . 8 (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))) ∈ V
16 simpll 527 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → 𝑓:𝑛onto𝐴)
17 simplr 528 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → 𝑛 ∈ ω)
18 simpr 110 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → ∅ ∈ 𝑛)
19 eqid 2177 . . . . . . . . 9 (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))) = (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅)))
2016, 17, 18, 19enumctlemm 7113 . . . . . . . 8 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))):ω–onto𝐴)
21 foeq1 5435 . . . . . . . . 9 (𝑔 = (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))) → (𝑔:ω–onto𝐴 ↔ (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))):ω–onto𝐴))
2221spcegv 2826 . . . . . . . 8 ((𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))) ∈ V → ((𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))):ω–onto𝐴 → ∃𝑔 𝑔:ω–onto𝐴))
2315, 20, 22mpsyl 65 . . . . . . 7 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → ∃𝑔 𝑔:ω–onto𝐴)
24 fof 5439 . . . . . . . . . . 11 (𝑓:𝑛onto𝐴𝑓:𝑛𝐴)
2524ad2antrr 488 . . . . . . . . . 10 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → 𝑓:𝑛𝐴)
2625, 18ffvelcdmd 5653 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → (𝑓‘∅) ∈ 𝐴)
27 eleq1 2240 . . . . . . . . . 10 (𝑥 = (𝑓‘∅) → (𝑥𝐴 ↔ (𝑓‘∅) ∈ 𝐴))
2827spcegv 2826 . . . . . . . . 9 ((𝑓‘∅) ∈ 𝐴 → ((𝑓‘∅) ∈ 𝐴 → ∃𝑥 𝑥𝐴))
2926, 26, 28sylc 62 . . . . . . . 8 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → ∃𝑥 𝑥𝐴)
30 ctm 7108 . . . . . . . 8 (∃𝑥 𝑥𝐴 → (∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto𝐴))
3129, 30syl 14 . . . . . . 7 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → (∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto𝐴))
3223, 31mpbird 167 . . . . . 6 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
33 0elnn 4619 . . . . . . 7 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∅ ∈ 𝑛))
3433adantl 277 . . . . . 6 ((𝑓:𝑛onto𝐴𝑛 ∈ ω) → (𝑛 = ∅ ∨ ∅ ∈ 𝑛))
3513, 32, 34mpjaodan 798 . . . . 5 ((𝑓:𝑛onto𝐴𝑛 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
3635ex 115 . . . 4 (𝑓:𝑛onto𝐴 → (𝑛 ∈ ω → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)))
3736exlimiv 1598 . . 3 (∃𝑓 𝑓:𝑛onto𝐴 → (𝑛 ∈ ω → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)))
3837impcom 125 . 2 ((𝑛 ∈ ω ∧ ∃𝑓 𝑓:𝑛onto𝐴) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
3938rexlimiva 2589 1 (∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wex 1492  wcel 2148  wrex 2456  Vcvv 2738  c0 3423  ifcif 3535  cmpt 4065  ωcom 4590  wf 5213  ontowfo 5215  cfv 5217  1oc1o 6410  cdju 7036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-1st 6141  df-2nd 6142  df-1o 6417  df-dju 7037  df-inl 7046  df-inr 7047  df-case 7083
This theorem is referenced by:  finct  7115
  Copyright terms: Public domain W3C validator