ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enumct GIF version

Theorem enumct 7176
Description: A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as 𝑛 ∈ ω∃𝑓𝑓:𝑛onto𝐴 per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as 𝑔𝑔:ω–onto→(𝐴 ⊔ 1o) per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
enumct (∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
Distinct variable group:   𝐴,𝑓,𝑔,𝑛

Proof of Theorem enumct
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ 𝑛 = ∅) → 𝑓:𝑛onto𝐴)
2 foeq2 5474 . . . . . . . . . 10 (𝑛 = ∅ → (𝑓:𝑛onto𝐴𝑓:∅–onto𝐴))
32adantl 277 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ 𝑛 = ∅) → (𝑓:𝑛onto𝐴𝑓:∅–onto𝐴))
41, 3mpbid 147 . . . . . . . 8 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ 𝑛 = ∅) → 𝑓:∅–onto𝐴)
5 fo00 5537 . . . . . . . 8 (𝑓:∅–onto𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
64, 5sylib 122 . . . . . . 7 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ 𝑛 = ∅) → (𝑓 = ∅ ∧ 𝐴 = ∅))
7 0ct 7168 . . . . . . . 8 𝑔 𝑔:ω–onto→(∅ ⊔ 1o)
8 djueq1 7101 . . . . . . . . . 10 (𝐴 = ∅ → (𝐴 ⊔ 1o) = (∅ ⊔ 1o))
9 foeq3 5475 . . . . . . . . . 10 ((𝐴 ⊔ 1o) = (∅ ⊔ 1o) → (𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(∅ ⊔ 1o)))
108, 9syl 14 . . . . . . . . 9 (𝐴 = ∅ → (𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(∅ ⊔ 1o)))
1110exbidv 1836 . . . . . . . 8 (𝐴 = ∅ → (∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(∅ ⊔ 1o)))
127, 11mpbiri 168 . . . . . . 7 (𝐴 = ∅ → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
136, 12simpl2im 386 . . . . . 6 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ 𝑛 = ∅) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
14 omex 4626 . . . . . . . . 9 ω ∈ V
1514mptex 5785 . . . . . . . 8 (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))) ∈ V
16 simpll 527 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → 𝑓:𝑛onto𝐴)
17 simplr 528 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → 𝑛 ∈ ω)
18 simpr 110 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → ∅ ∈ 𝑛)
19 eqid 2193 . . . . . . . . 9 (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))) = (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅)))
2016, 17, 18, 19enumctlemm 7175 . . . . . . . 8 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))):ω–onto𝐴)
21 foeq1 5473 . . . . . . . . 9 (𝑔 = (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))) → (𝑔:ω–onto𝐴 ↔ (𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))):ω–onto𝐴))
2221spcegv 2849 . . . . . . . 8 ((𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))) ∈ V → ((𝑘 ∈ ω ↦ if(𝑘𝑛, (𝑓𝑘), (𝑓‘∅))):ω–onto𝐴 → ∃𝑔 𝑔:ω–onto𝐴))
2315, 20, 22mpsyl 65 . . . . . . 7 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → ∃𝑔 𝑔:ω–onto𝐴)
24 fof 5477 . . . . . . . . . . 11 (𝑓:𝑛onto𝐴𝑓:𝑛𝐴)
2524ad2antrr 488 . . . . . . . . . 10 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → 𝑓:𝑛𝐴)
2625, 18ffvelcdmd 5695 . . . . . . . . 9 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → (𝑓‘∅) ∈ 𝐴)
27 eleq1 2256 . . . . . . . . . 10 (𝑥 = (𝑓‘∅) → (𝑥𝐴 ↔ (𝑓‘∅) ∈ 𝐴))
2827spcegv 2849 . . . . . . . . 9 ((𝑓‘∅) ∈ 𝐴 → ((𝑓‘∅) ∈ 𝐴 → ∃𝑥 𝑥𝐴))
2926, 26, 28sylc 62 . . . . . . . 8 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → ∃𝑥 𝑥𝐴)
30 ctm 7170 . . . . . . . 8 (∃𝑥 𝑥𝐴 → (∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto𝐴))
3129, 30syl 14 . . . . . . 7 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → (∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto𝐴))
3223, 31mpbird 167 . . . . . 6 (((𝑓:𝑛onto𝐴𝑛 ∈ ω) ∧ ∅ ∈ 𝑛) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
33 0elnn 4652 . . . . . . 7 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∅ ∈ 𝑛))
3433adantl 277 . . . . . 6 ((𝑓:𝑛onto𝐴𝑛 ∈ ω) → (𝑛 = ∅ ∨ ∅ ∈ 𝑛))
3513, 32, 34mpjaodan 799 . . . . 5 ((𝑓:𝑛onto𝐴𝑛 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
3635ex 115 . . . 4 (𝑓:𝑛onto𝐴 → (𝑛 ∈ ω → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)))
3736exlimiv 1609 . . 3 (∃𝑓 𝑓:𝑛onto𝐴 → (𝑛 ∈ ω → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)))
3837impcom 125 . 2 ((𝑛 ∈ ω ∧ ∃𝑓 𝑓:𝑛onto𝐴) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
3938rexlimiva 2606 1 (∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1503  wcel 2164  wrex 2473  Vcvv 2760  c0 3447  ifcif 3558  cmpt 4091  ωcom 4623  wf 5251  ontowfo 5253  cfv 5255  1oc1o 6464  cdju 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-dju 7099  df-inl 7108  df-inr 7109  df-case 7145
This theorem is referenced by:  finct  7177
  Copyright terms: Public domain W3C validator