| Step | Hyp | Ref
| Expression |
| 1 | | ctssdccl.s |
. . . 4
⊢ 𝑆 = {𝑥 ∈ ω ∣ (𝐹‘𝑥) ∈ (inl “ 𝐴)} |
| 2 | | ssrab2 3268 |
. . . 4
⊢ {𝑥 ∈ ω ∣ (𝐹‘𝑥) ∈ (inl “ 𝐴)} ⊆ ω |
| 3 | 1, 2 | eqsstri 3215 |
. . 3
⊢ 𝑆 ⊆
ω |
| 4 | 3 | a1i 9 |
. 2
⊢ (𝜑 → 𝑆 ⊆ ω) |
| 5 | | djulf1o 7124 |
. . . . . . 7
⊢
inl:V–1-1-onto→({∅} × V) |
| 6 | | f1ocnv 5517 |
. . . . . . 7
⊢
(inl:V–1-1-onto→({∅} × V) → ◡inl:({∅} × V)–1-1-onto→V) |
| 7 | | f1ofun 5506 |
. . . . . . 7
⊢ (◡inl:({∅} × V)–1-1-onto→V → Fun ◡inl) |
| 8 | 5, 6, 7 | mp2b 8 |
. . . . . 6
⊢ Fun ◡inl |
| 9 | | ctssdccl.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:ω–onto→(𝐴 ⊔ 1o)) |
| 10 | | fofun 5481 |
. . . . . . 7
⊢ (𝐹:ω–onto→(𝐴 ⊔ 1o) → Fun 𝐹) |
| 11 | 9, 10 | syl 14 |
. . . . . 6
⊢ (𝜑 → Fun 𝐹) |
| 12 | | funco 5298 |
. . . . . . 7
⊢ ((Fun
◡inl ∧ Fun 𝐹) → Fun (◡inl ∘ 𝐹)) |
| 13 | | ctssdccl.g |
. . . . . . . 8
⊢ 𝐺 = (◡inl ∘ 𝐹) |
| 14 | 13 | funeqi 5279 |
. . . . . . 7
⊢ (Fun
𝐺 ↔ Fun (◡inl ∘ 𝐹)) |
| 15 | 12, 14 | sylibr 134 |
. . . . . 6
⊢ ((Fun
◡inl ∧ Fun 𝐹) → Fun 𝐺) |
| 16 | 8, 11, 15 | sylancr 414 |
. . . . 5
⊢ (𝜑 → Fun 𝐺) |
| 17 | | fof 5480 |
. . . . . . . . . . . 12
⊢ (𝐹:ω–onto→(𝐴 ⊔ 1o) → 𝐹:ω⟶(𝐴 ⊔
1o)) |
| 18 | 9, 17 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ω⟶(𝐴 ⊔ 1o)) |
| 19 | 18 | fdmd 5414 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝐹 = ω) |
| 20 | 19 | eleq2d 2266 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ dom 𝐹 ↔ 𝑛 ∈ ω)) |
| 21 | 20 | anbi1d 465 |
. . . . . . . 8
⊢ (𝜑 → ((𝑛 ∈ dom 𝐹 ∧ (𝐹‘𝑛) ∈ dom ◡inl) ↔ (𝑛 ∈ ω ∧ (𝐹‘𝑛) ∈ dom ◡inl))) |
| 22 | | dmcoss 4935 |
. . . . . . . . . . . 12
⊢ dom
(◡inl ∘ 𝐹) ⊆ dom 𝐹 |
| 23 | 22 | sseli 3179 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ dom (◡inl ∘ 𝐹) → 𝑛 ∈ dom 𝐹) |
| 24 | 23 | pm4.71ri 392 |
. . . . . . . . . 10
⊢ (𝑛 ∈ dom (◡inl ∘ 𝐹) ↔ (𝑛 ∈ dom 𝐹 ∧ 𝑛 ∈ dom (◡inl ∘ 𝐹))) |
| 25 | | dmfco 5629 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ 𝑛 ∈ dom 𝐹) → (𝑛 ∈ dom (◡inl ∘ 𝐹) ↔ (𝐹‘𝑛) ∈ dom ◡inl)) |
| 26 | 25 | pm5.32da 452 |
. . . . . . . . . 10
⊢ (Fun
𝐹 → ((𝑛 ∈ dom 𝐹 ∧ 𝑛 ∈ dom (◡inl ∘ 𝐹)) ↔ (𝑛 ∈ dom 𝐹 ∧ (𝐹‘𝑛) ∈ dom ◡inl))) |
| 27 | 24, 26 | bitrid 192 |
. . . . . . . . 9
⊢ (Fun
𝐹 → (𝑛 ∈ dom (◡inl ∘ 𝐹) ↔ (𝑛 ∈ dom 𝐹 ∧ (𝐹‘𝑛) ∈ dom ◡inl))) |
| 28 | 11, 27 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (𝑛 ∈ dom (◡inl ∘ 𝐹) ↔ (𝑛 ∈ dom 𝐹 ∧ (𝐹‘𝑛) ∈ dom ◡inl))) |
| 29 | | simpr 110 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)) → (𝐹‘𝑛) ∈ (inl “ 𝐴)) |
| 30 | | imassrn 5020 |
. . . . . . . . . . . . . 14
⊢ (inl
“ 𝐴) ⊆ ran
inl |
| 31 | 30 | sseli 3179 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑛) ∈ (inl “ 𝐴) → (𝐹‘𝑛) ∈ ran inl) |
| 32 | 31 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)) → (𝐹‘𝑛) ∈ ran inl) |
| 33 | | df-rn 4674 |
. . . . . . . . . . . . 13
⊢ ran inl =
dom ◡inl |
| 34 | 33 | eleq2i 2263 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑛) ∈ ran inl ↔ (𝐹‘𝑛) ∈ dom ◡inl) |
| 35 | 32, 34 | sylib 122 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)) → (𝐹‘𝑛) ∈ dom ◡inl) |
| 36 | 29, 35 | 2thd 175 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)) → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ (𝐹‘𝑛) ∈ dom ◡inl)) |
| 37 | | djuin 7130 |
. . . . . . . . . . . . . 14
⊢ ((inl
“ 𝐴) ∩ (inr
“ 1o)) = ∅ |
| 38 | | disjel 3505 |
. . . . . . . . . . . . . 14
⊢ ((((inl
“ 𝐴) ∩ (inr
“ 1o)) = ∅ ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)) → ¬ (𝐹‘𝑛) ∈ (inr “
1o)) |
| 39 | 37, 38 | mpan 424 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑛) ∈ (inl “ 𝐴) → ¬ (𝐹‘𝑛) ∈ (inr “
1o)) |
| 40 | 39 | con2i 628 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑛) ∈ (inr “ 1o) →
¬ (𝐹‘𝑛) ∈ (inl “ 𝐴)) |
| 41 | 40 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inr “ 1o)) →
¬ (𝐹‘𝑛) ∈ (inl “ 𝐴)) |
| 42 | | djuin 7130 |
. . . . . . . . . . . . . . . 16
⊢ ((inl
“ V) ∩ (inr “ 1o)) = ∅ |
| 43 | | disjel 3505 |
. . . . . . . . . . . . . . . 16
⊢ ((((inl
“ V) ∩ (inr “ 1o)) = ∅ ∧ (𝐹‘𝑛) ∈ (inl “ V)) → ¬ (𝐹‘𝑛) ∈ (inr “
1o)) |
| 44 | 42, 43 | mpan 424 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑛) ∈ (inl “ V) → ¬ (𝐹‘𝑛) ∈ (inr “
1o)) |
| 45 | | dfrn4 5130 |
. . . . . . . . . . . . . . 15
⊢ ran inl =
(inl “ V) |
| 46 | 44, 45 | eleq2s 2291 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑛) ∈ ran inl → ¬ (𝐹‘𝑛) ∈ (inr “
1o)) |
| 47 | 46 | con2i 628 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑛) ∈ (inr “ 1o) →
¬ (𝐹‘𝑛) ∈ ran
inl) |
| 48 | 47 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inr “ 1o)) →
¬ (𝐹‘𝑛) ∈ ran
inl) |
| 49 | 48, 34 | sylnib 677 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inr “ 1o)) →
¬ (𝐹‘𝑛) ∈ dom ◡inl) |
| 50 | 41, 49 | 2falsed 703 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inr “ 1o)) →
((𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ (𝐹‘𝑛) ∈ dom ◡inl)) |
| 51 | 18 | ffvelcdmda 5697 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐹‘𝑛) ∈ (𝐴 ⊔ 1o)) |
| 52 | | djuun 7133 |
. . . . . . . . . . . . 13
⊢ ((inl
“ 𝐴) ∪ (inr
“ 1o)) = (𝐴 ⊔ 1o) |
| 53 | 52 | eleq2i 2263 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑛) ∈ ((inl “ 𝐴) ∪ (inr “ 1o)) ↔
(𝐹‘𝑛) ∈ (𝐴 ⊔ 1o)) |
| 54 | 51, 53 | sylibr 134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐹‘𝑛) ∈ ((inl “ 𝐴) ∪ (inr “
1o))) |
| 55 | | elun 3304 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑛) ∈ ((inl “ 𝐴) ∪ (inr “ 1o)) ↔
((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ (𝐹‘𝑛) ∈ (inr “
1o))) |
| 56 | 54, 55 | sylib 122 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ (𝐹‘𝑛) ∈ (inr “
1o))) |
| 57 | 36, 50, 56 | mpjaodan 799 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ (𝐹‘𝑛) ∈ dom ◡inl)) |
| 58 | 57 | pm5.32da 452 |
. . . . . . . 8
⊢ (𝜑 → ((𝑛 ∈ ω ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)) ↔ (𝑛 ∈ ω ∧ (𝐹‘𝑛) ∈ dom ◡inl))) |
| 59 | 21, 28, 58 | 3bitr4d 220 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ dom (◡inl ∘ 𝐹) ↔ (𝑛 ∈ ω ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)))) |
| 60 | 13 | dmeqi 4867 |
. . . . . . . 8
⊢ dom 𝐺 = dom (◡inl ∘ 𝐹) |
| 61 | 60 | eleq2i 2263 |
. . . . . . 7
⊢ (𝑛 ∈ dom 𝐺 ↔ 𝑛 ∈ dom (◡inl ∘ 𝐹)) |
| 62 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (𝐹‘𝑥) = (𝐹‘𝑛)) |
| 63 | 62 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → ((𝐹‘𝑥) ∈ (inl “ 𝐴) ↔ (𝐹‘𝑛) ∈ (inl “ 𝐴))) |
| 64 | 63, 1 | elrab2 2923 |
. . . . . . 7
⊢ (𝑛 ∈ 𝑆 ↔ (𝑛 ∈ ω ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴))) |
| 65 | 59, 61, 64 | 3bitr4g 223 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ dom 𝐺 ↔ 𝑛 ∈ 𝑆)) |
| 66 | 65 | eqrdv 2194 |
. . . . 5
⊢ (𝜑 → dom 𝐺 = 𝑆) |
| 67 | | df-fn 5261 |
. . . . 5
⊢ (𝐺 Fn 𝑆 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝑆)) |
| 68 | 16, 66, 67 | sylanbrc 417 |
. . . 4
⊢ (𝜑 → 𝐺 Fn 𝑆) |
| 69 | 13 | fveq1i 5559 |
. . . . . . 7
⊢ (𝐺‘𝑚) = ((◡inl ∘ 𝐹)‘𝑚) |
| 70 | 18 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → 𝐹:ω⟶(𝐴 ⊔ 1o)) |
| 71 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑚 → (𝐹‘𝑥) = (𝐹‘𝑚)) |
| 72 | 71 | eleq1d 2265 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑚 → ((𝐹‘𝑥) ∈ (inl “ 𝐴) ↔ (𝐹‘𝑚) ∈ (inl “ 𝐴))) |
| 73 | 72, 1 | elrab2 2923 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ 𝑆 ↔ (𝑚 ∈ ω ∧ (𝐹‘𝑚) ∈ (inl “ 𝐴))) |
| 74 | 73 | biimpi 120 |
. . . . . . . . . 10
⊢ (𝑚 ∈ 𝑆 → (𝑚 ∈ ω ∧ (𝐹‘𝑚) ∈ (inl “ 𝐴))) |
| 75 | 74 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝑚 ∈ ω ∧ (𝐹‘𝑚) ∈ (inl “ 𝐴))) |
| 76 | 75 | simpld 112 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → 𝑚 ∈ ω) |
| 77 | | fvco3 5632 |
. . . . . . . 8
⊢ ((𝐹:ω⟶(𝐴 ⊔ 1o) ∧
𝑚 ∈ ω) →
((◡inl ∘ 𝐹)‘𝑚) = (◡inl‘(𝐹‘𝑚))) |
| 78 | 70, 76, 77 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → ((◡inl ∘ 𝐹)‘𝑚) = (◡inl‘(𝐹‘𝑚))) |
| 79 | 69, 78 | eqtrid 2241 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝐺‘𝑚) = (◡inl‘(𝐹‘𝑚))) |
| 80 | | f1ofun 5506 |
. . . . . . . . . 10
⊢
(inl:V–1-1-onto→({∅} × V) → Fun
inl) |
| 81 | 5, 80 | ax-mp 5 |
. . . . . . . . 9
⊢ Fun
inl |
| 82 | | fvelima 5612 |
. . . . . . . . 9
⊢ ((Fun inl
∧ (𝐹‘𝑚) ∈ (inl “ 𝐴)) → ∃𝑧 ∈ 𝐴 (inl‘𝑧) = (𝐹‘𝑚)) |
| 83 | 81, 82 | mpan 424 |
. . . . . . . 8
⊢ ((𝐹‘𝑚) ∈ (inl “ 𝐴) → ∃𝑧 ∈ 𝐴 (inl‘𝑧) = (𝐹‘𝑚)) |
| 84 | 75, 83 | simpl2im 386 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → ∃𝑧 ∈ 𝐴 (inl‘𝑧) = (𝐹‘𝑚)) |
| 85 | | simprr 531 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ (inl‘𝑧) = (𝐹‘𝑚))) → (inl‘𝑧) = (𝐹‘𝑚)) |
| 86 | 85 | fveq2d 5562 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ (inl‘𝑧) = (𝐹‘𝑚))) → (◡inl‘(inl‘𝑧)) = (◡inl‘(𝐹‘𝑚))) |
| 87 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
| 88 | | f1ocnvfv1 5824 |
. . . . . . . . . 10
⊢
((inl:V–1-1-onto→({∅} × V) ∧ 𝑧 ∈ V) → (◡inl‘(inl‘𝑧)) = 𝑧) |
| 89 | 5, 87, 88 | mp2an 426 |
. . . . . . . . 9
⊢ (◡inl‘(inl‘𝑧)) = 𝑧 |
| 90 | | simprl 529 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ (inl‘𝑧) = (𝐹‘𝑚))) → 𝑧 ∈ 𝐴) |
| 91 | 89, 90 | eqeltrid 2283 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ (inl‘𝑧) = (𝐹‘𝑚))) → (◡inl‘(inl‘𝑧)) ∈ 𝐴) |
| 92 | 86, 91 | eqeltrrd 2274 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ (inl‘𝑧) = (𝐹‘𝑚))) → (◡inl‘(𝐹‘𝑚)) ∈ 𝐴) |
| 93 | 84, 92 | rexlimddv 2619 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (◡inl‘(𝐹‘𝑚)) ∈ 𝐴) |
| 94 | 79, 93 | eqeltrd 2273 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝐺‘𝑚) ∈ 𝐴) |
| 95 | 94 | ralrimiva 2570 |
. . . 4
⊢ (𝜑 → ∀𝑚 ∈ 𝑆 (𝐺‘𝑚) ∈ 𝐴) |
| 96 | | ffnfv 5720 |
. . . 4
⊢ (𝐺:𝑆⟶𝐴 ↔ (𝐺 Fn 𝑆 ∧ ∀𝑚 ∈ 𝑆 (𝐺‘𝑚) ∈ 𝐴)) |
| 97 | 68, 95, 96 | sylanbrc 417 |
. . 3
⊢ (𝜑 → 𝐺:𝑆⟶𝐴) |
| 98 | | djulcl 7117 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝐴 → (inl‘𝑚) ∈ (𝐴 ⊔ 1o)) |
| 99 | | foelrn 5799 |
. . . . . . . . . 10
⊢ ((𝐹:ω–onto→(𝐴 ⊔ 1o) ∧
(inl‘𝑚) ∈ (𝐴 ⊔ 1o)) →
∃𝑦 ∈ ω
(inl‘𝑚) = (𝐹‘𝑦)) |
| 100 | 9, 99 | sylan 283 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (inl‘𝑚) ∈ (𝐴 ⊔ 1o)) →
∃𝑦 ∈ ω
(inl‘𝑚) = (𝐹‘𝑦)) |
| 101 | | df-rex 2481 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
ω (inl‘𝑚) =
(𝐹‘𝑦) ↔ ∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) |
| 102 | 100, 101 | sylib 122 |
. . . . . . . 8
⊢ ((𝜑 ∧ (inl‘𝑚) ∈ (𝐴 ⊔ 1o)) →
∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) |
| 103 | 98, 102 | sylan2 286 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → ∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) |
| 104 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 105 | 104 | eleq1d 2265 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) ∈ (inl “ 𝐴) ↔ (𝐹‘𝑦) ∈ (inl “ 𝐴))) |
| 106 | | simprl 529 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) → 𝑦 ∈ ω) |
| 107 | | simprr 531 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) → (inl‘𝑚) = (𝐹‘𝑦)) |
| 108 | | vex 2766 |
. . . . . . . . . . . . . . . 16
⊢ 𝑚 ∈ V |
| 109 | | f1odm 5508 |
. . . . . . . . . . . . . . . . 17
⊢
(inl:V–1-1-onto→({∅} × V) → dom inl =
V) |
| 110 | 5, 109 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ dom inl =
V |
| 111 | 108, 110 | eleqtrri 2272 |
. . . . . . . . . . . . . . 15
⊢ 𝑚 ∈ dom inl |
| 112 | | funfvima 5794 |
. . . . . . . . . . . . . . 15
⊢ ((Fun inl
∧ 𝑚 ∈ dom inl)
→ (𝑚 ∈ 𝐴 → (inl‘𝑚) ∈ (inl “ 𝐴))) |
| 113 | 81, 111, 112 | mp2an 426 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ 𝐴 → (inl‘𝑚) ∈ (inl “ 𝐴)) |
| 114 | 113 | ad2antlr 489 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) → (inl‘𝑚) ∈ (inl “ 𝐴)) |
| 115 | 107, 114 | eqeltrrd 2274 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) → (𝐹‘𝑦) ∈ (inl “ 𝐴)) |
| 116 | 105, 106,
115 | elrabd 2922 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) → 𝑦 ∈ {𝑥 ∈ ω ∣ (𝐹‘𝑥) ∈ (inl “ 𝐴)}) |
| 117 | 116, 1 | eleqtrrdi 2290 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) → 𝑦 ∈ 𝑆) |
| 118 | 117, 107 | jca 306 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) → (𝑦 ∈ 𝑆 ∧ (inl‘𝑚) = (𝐹‘𝑦))) |
| 119 | 118 | ex 115 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → ((𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦)) → (𝑦 ∈ 𝑆 ∧ (inl‘𝑚) = (𝐹‘𝑦)))) |
| 120 | 119 | eximdv 1894 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦)) → ∃𝑦(𝑦 ∈ 𝑆 ∧ (inl‘𝑚) = (𝐹‘𝑦)))) |
| 121 | 103, 120 | mpd 13 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → ∃𝑦(𝑦 ∈ 𝑆 ∧ (inl‘𝑚) = (𝐹‘𝑦))) |
| 122 | | df-rex 2481 |
. . . . . 6
⊢
(∃𝑦 ∈
𝑆 (inl‘𝑚) = (𝐹‘𝑦) ↔ ∃𝑦(𝑦 ∈ 𝑆 ∧ (inl‘𝑚) = (𝐹‘𝑦))) |
| 123 | 121, 122 | sylibr 134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → ∃𝑦 ∈ 𝑆 (inl‘𝑚) = (𝐹‘𝑦)) |
| 124 | | f1ocnvfv1 5824 |
. . . . . . . . . 10
⊢
((inl:V–1-1-onto→({∅} × V) ∧ 𝑚 ∈ V) → (◡inl‘(inl‘𝑚)) = 𝑚) |
| 125 | 5, 108, 124 | mp2an 426 |
. . . . . . . . 9
⊢ (◡inl‘(inl‘𝑚)) = 𝑚 |
| 126 | | simpr 110 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) ∧ (inl‘𝑚) = (𝐹‘𝑦)) → (inl‘𝑚) = (𝐹‘𝑦)) |
| 127 | 126 | fveq2d 5562 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) ∧ (inl‘𝑚) = (𝐹‘𝑦)) → (◡inl‘(inl‘𝑚)) = (◡inl‘(𝐹‘𝑦))) |
| 128 | 125, 127 | eqtr3id 2243 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) ∧ (inl‘𝑚) = (𝐹‘𝑦)) → 𝑚 = (◡inl‘(𝐹‘𝑦))) |
| 129 | 13 | fveq1i 5559 |
. . . . . . . . . 10
⊢ (𝐺‘𝑦) = ((◡inl ∘ 𝐹)‘𝑦) |
| 130 | 18 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → 𝐹:ω⟶(𝐴 ⊔ 1o)) |
| 131 | 3 | sseli 3179 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑆 → 𝑦 ∈ ω) |
| 132 | 131 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ω) |
| 133 | | fvco3 5632 |
. . . . . . . . . . 11
⊢ ((𝐹:ω⟶(𝐴 ⊔ 1o) ∧
𝑦 ∈ ω) →
((◡inl ∘ 𝐹)‘𝑦) = (◡inl‘(𝐹‘𝑦))) |
| 134 | 130, 132,
133 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → ((◡inl ∘ 𝐹)‘𝑦) = (◡inl‘(𝐹‘𝑦))) |
| 135 | 129, 134 | eqtrid 2241 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = (◡inl‘(𝐹‘𝑦))) |
| 136 | 135 | adantr 276 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) ∧ (inl‘𝑚) = (𝐹‘𝑦)) → (𝐺‘𝑦) = (◡inl‘(𝐹‘𝑦))) |
| 137 | 128, 136 | eqtr4d 2232 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) ∧ (inl‘𝑚) = (𝐹‘𝑦)) → 𝑚 = (𝐺‘𝑦)) |
| 138 | 137 | ex 115 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → ((inl‘𝑚) = (𝐹‘𝑦) → 𝑚 = (𝐺‘𝑦))) |
| 139 | 138 | reximdva 2599 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (∃𝑦 ∈ 𝑆 (inl‘𝑚) = (𝐹‘𝑦) → ∃𝑦 ∈ 𝑆 𝑚 = (𝐺‘𝑦))) |
| 140 | 123, 139 | mpd 13 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → ∃𝑦 ∈ 𝑆 𝑚 = (𝐺‘𝑦)) |
| 141 | 140 | ralrimiva 2570 |
. . 3
⊢ (𝜑 → ∀𝑚 ∈ 𝐴 ∃𝑦 ∈ 𝑆 𝑚 = (𝐺‘𝑦)) |
| 142 | | dffo3 5709 |
. . 3
⊢ (𝐺:𝑆–onto→𝐴 ↔ (𝐺:𝑆⟶𝐴 ∧ ∀𝑚 ∈ 𝐴 ∃𝑦 ∈ 𝑆 𝑚 = (𝐺‘𝑦))) |
| 143 | 97, 141, 142 | sylanbrc 417 |
. 2
⊢ (𝜑 → 𝐺:𝑆–onto→𝐴) |
| 144 | 53, 55 | bitr3i 186 |
. . . . . . 7
⊢ ((𝐹‘𝑛) ∈ (𝐴 ⊔ 1o) ↔ ((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ (𝐹‘𝑛) ∈ (inr “
1o))) |
| 145 | 51, 144 | sylib 122 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ (𝐹‘𝑛) ∈ (inr “
1o))) |
| 146 | 40 | orim2i 762 |
. . . . . 6
⊢ (((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ (𝐹‘𝑛) ∈ (inr “ 1o)) →
((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ ¬ (𝐹‘𝑛) ∈ (inl “ 𝐴))) |
| 147 | 145, 146 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ ¬ (𝐹‘𝑛) ∈ (inl “ 𝐴))) |
| 148 | | df-dc 836 |
. . . . 5
⊢
(DECID (𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ ((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ ¬ (𝐹‘𝑛) ∈ (inl “ 𝐴))) |
| 149 | 147, 148 | sylibr 134 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → DECID
(𝐹‘𝑛) ∈ (inl “ 𝐴)) |
| 150 | | ibar 301 |
. . . . . . 7
⊢ (𝑛 ∈ ω → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ (𝑛 ∈ ω ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)))) |
| 151 | 150 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ (𝑛 ∈ ω ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)))) |
| 152 | 151, 64 | bitr4di 198 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ 𝑛 ∈ 𝑆)) |
| 153 | 152 | dcbid 839 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (DECID
(𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ DECID 𝑛 ∈ 𝑆)) |
| 154 | 149, 153 | mpbid 147 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → DECID
𝑛 ∈ 𝑆) |
| 155 | 154 | ralrimiva 2570 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) |
| 156 | 4, 143, 155 | 3jca 1179 |
1
⊢ (𝜑 → (𝑆 ⊆ ω ∧ 𝐺:𝑆–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆)) |