ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssdccl GIF version

Theorem ctssdccl 7124
Description: A mapping from a decidable subset of the natural numbers onto a countable set. This is similar to one direction of ctssdc 7126 but expressed in terms of classes rather than βˆƒ. (Contributed by Jim Kingdon, 30-Oct-2023.)
Hypotheses
Ref Expression
ctssdccl.f (πœ‘ β†’ 𝐹:ω–ontoβ†’(𝐴 βŠ” 1o))
ctssdccl.s 𝑆 = {π‘₯ ∈ Ο‰ ∣ (πΉβ€˜π‘₯) ∈ (inl β€œ 𝐴)}
ctssdccl.g 𝐺 = (β—‘inl ∘ 𝐹)
Assertion
Ref Expression
ctssdccl (πœ‘ β†’ (𝑆 βŠ† Ο‰ ∧ 𝐺:𝑆–onto→𝐴 ∧ βˆ€π‘› ∈ Ο‰ DECID 𝑛 ∈ 𝑆))
Distinct variable groups:   π‘₯,𝐴   𝑛,𝐹,π‘₯   𝑛,𝐺   𝑆,𝑛   πœ‘,𝑛
Allowed substitution hints:   πœ‘(π‘₯)   𝐴(𝑛)   𝑆(π‘₯)   𝐺(π‘₯)

Proof of Theorem ctssdccl
Dummy variables π‘š 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctssdccl.s . . . 4 𝑆 = {π‘₯ ∈ Ο‰ ∣ (πΉβ€˜π‘₯) ∈ (inl β€œ 𝐴)}
2 ssrab2 3252 . . . 4 {π‘₯ ∈ Ο‰ ∣ (πΉβ€˜π‘₯) ∈ (inl β€œ 𝐴)} βŠ† Ο‰
31, 2eqsstri 3199 . . 3 𝑆 βŠ† Ο‰
43a1i 9 . 2 (πœ‘ β†’ 𝑆 βŠ† Ο‰)
5 djulf1o 7071 . . . . . . 7 inl:V–1-1-ontoβ†’({βˆ…} Γ— V)
6 f1ocnv 5486 . . . . . . 7 (inl:V–1-1-ontoβ†’({βˆ…} Γ— V) β†’ β—‘inl:({βˆ…} Γ— V)–1-1-ontoβ†’V)
7 f1ofun 5475 . . . . . . 7 (β—‘inl:({βˆ…} Γ— V)–1-1-ontoβ†’V β†’ Fun β—‘inl)
85, 6, 7mp2b 8 . . . . . 6 Fun β—‘inl
9 ctssdccl.f . . . . . . 7 (πœ‘ β†’ 𝐹:ω–ontoβ†’(𝐴 βŠ” 1o))
10 fofun 5451 . . . . . . 7 (𝐹:ω–ontoβ†’(𝐴 βŠ” 1o) β†’ Fun 𝐹)
119, 10syl 14 . . . . . 6 (πœ‘ β†’ Fun 𝐹)
12 funco 5268 . . . . . . 7 ((Fun β—‘inl ∧ Fun 𝐹) β†’ Fun (β—‘inl ∘ 𝐹))
13 ctssdccl.g . . . . . . . 8 𝐺 = (β—‘inl ∘ 𝐹)
1413funeqi 5249 . . . . . . 7 (Fun 𝐺 ↔ Fun (β—‘inl ∘ 𝐹))
1512, 14sylibr 134 . . . . . 6 ((Fun β—‘inl ∧ Fun 𝐹) β†’ Fun 𝐺)
168, 11, 15sylancr 414 . . . . 5 (πœ‘ β†’ Fun 𝐺)
17 fof 5450 . . . . . . . . . . . 12 (𝐹:ω–ontoβ†’(𝐴 βŠ” 1o) β†’ 𝐹:Ο‰βŸΆ(𝐴 βŠ” 1o))
189, 17syl 14 . . . . . . . . . . 11 (πœ‘ β†’ 𝐹:Ο‰βŸΆ(𝐴 βŠ” 1o))
1918fdmd 5384 . . . . . . . . . 10 (πœ‘ β†’ dom 𝐹 = Ο‰)
2019eleq2d 2257 . . . . . . . . 9 (πœ‘ β†’ (𝑛 ∈ dom 𝐹 ↔ 𝑛 ∈ Ο‰))
2120anbi1d 465 . . . . . . . 8 (πœ‘ β†’ ((𝑛 ∈ dom 𝐹 ∧ (πΉβ€˜π‘›) ∈ dom β—‘inl) ↔ (𝑛 ∈ Ο‰ ∧ (πΉβ€˜π‘›) ∈ dom β—‘inl)))
22 dmcoss 4908 . . . . . . . . . . . 12 dom (β—‘inl ∘ 𝐹) βŠ† dom 𝐹
2322sseli 3163 . . . . . . . . . . 11 (𝑛 ∈ dom (β—‘inl ∘ 𝐹) β†’ 𝑛 ∈ dom 𝐹)
2423pm4.71ri 392 . . . . . . . . . 10 (𝑛 ∈ dom (β—‘inl ∘ 𝐹) ↔ (𝑛 ∈ dom 𝐹 ∧ 𝑛 ∈ dom (β—‘inl ∘ 𝐹)))
25 dmfco 5597 . . . . . . . . . . 11 ((Fun 𝐹 ∧ 𝑛 ∈ dom 𝐹) β†’ (𝑛 ∈ dom (β—‘inl ∘ 𝐹) ↔ (πΉβ€˜π‘›) ∈ dom β—‘inl))
2625pm5.32da 452 . . . . . . . . . 10 (Fun 𝐹 β†’ ((𝑛 ∈ dom 𝐹 ∧ 𝑛 ∈ dom (β—‘inl ∘ 𝐹)) ↔ (𝑛 ∈ dom 𝐹 ∧ (πΉβ€˜π‘›) ∈ dom β—‘inl)))
2724, 26bitrid 192 . . . . . . . . 9 (Fun 𝐹 β†’ (𝑛 ∈ dom (β—‘inl ∘ 𝐹) ↔ (𝑛 ∈ dom 𝐹 ∧ (πΉβ€˜π‘›) ∈ dom β—‘inl)))
2811, 27syl 14 . . . . . . . 8 (πœ‘ β†’ (𝑛 ∈ dom (β—‘inl ∘ 𝐹) ↔ (𝑛 ∈ dom 𝐹 ∧ (πΉβ€˜π‘›) ∈ dom β—‘inl)))
29 simpr 110 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴)) β†’ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴))
30 imassrn 4993 . . . . . . . . . . . . . 14 (inl β€œ 𝐴) βŠ† ran inl
3130sseli 3163 . . . . . . . . . . . . 13 ((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) β†’ (πΉβ€˜π‘›) ∈ ran inl)
3231adantl 277 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴)) β†’ (πΉβ€˜π‘›) ∈ ran inl)
33 df-rn 4649 . . . . . . . . . . . . 13 ran inl = dom β—‘inl
3433eleq2i 2254 . . . . . . . . . . . 12 ((πΉβ€˜π‘›) ∈ ran inl ↔ (πΉβ€˜π‘›) ∈ dom β—‘inl)
3532, 34sylib 122 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴)) β†’ (πΉβ€˜π‘›) ∈ dom β—‘inl)
3629, 352thd 175 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴)) β†’ ((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ↔ (πΉβ€˜π‘›) ∈ dom β—‘inl))
37 djuin 7077 . . . . . . . . . . . . . 14 ((inl β€œ 𝐴) ∩ (inr β€œ 1o)) = βˆ…
38 disjel 3489 . . . . . . . . . . . . . 14 ((((inl β€œ 𝐴) ∩ (inr β€œ 1o)) = βˆ… ∧ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴)) β†’ Β¬ (πΉβ€˜π‘›) ∈ (inr β€œ 1o))
3937, 38mpan 424 . . . . . . . . . . . . 13 ((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) β†’ Β¬ (πΉβ€˜π‘›) ∈ (inr β€œ 1o))
4039con2i 628 . . . . . . . . . . . 12 ((πΉβ€˜π‘›) ∈ (inr β€œ 1o) β†’ Β¬ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴))
4140adantl 277 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ (πΉβ€˜π‘›) ∈ (inr β€œ 1o)) β†’ Β¬ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴))
42 djuin 7077 . . . . . . . . . . . . . . . 16 ((inl β€œ V) ∩ (inr β€œ 1o)) = βˆ…
43 disjel 3489 . . . . . . . . . . . . . . . 16 ((((inl β€œ V) ∩ (inr β€œ 1o)) = βˆ… ∧ (πΉβ€˜π‘›) ∈ (inl β€œ V)) β†’ Β¬ (πΉβ€˜π‘›) ∈ (inr β€œ 1o))
4442, 43mpan 424 . . . . . . . . . . . . . . 15 ((πΉβ€˜π‘›) ∈ (inl β€œ V) β†’ Β¬ (πΉβ€˜π‘›) ∈ (inr β€œ 1o))
45 dfrn4 5101 . . . . . . . . . . . . . . 15 ran inl = (inl β€œ V)
4644, 45eleq2s 2282 . . . . . . . . . . . . . 14 ((πΉβ€˜π‘›) ∈ ran inl β†’ Β¬ (πΉβ€˜π‘›) ∈ (inr β€œ 1o))
4746con2i 628 . . . . . . . . . . . . 13 ((πΉβ€˜π‘›) ∈ (inr β€œ 1o) β†’ Β¬ (πΉβ€˜π‘›) ∈ ran inl)
4847adantl 277 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ (πΉβ€˜π‘›) ∈ (inr β€œ 1o)) β†’ Β¬ (πΉβ€˜π‘›) ∈ ran inl)
4948, 34sylnib 677 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ (πΉβ€˜π‘›) ∈ (inr β€œ 1o)) β†’ Β¬ (πΉβ€˜π‘›) ∈ dom β—‘inl)
5041, 492falsed 703 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ (πΉβ€˜π‘›) ∈ (inr β€œ 1o)) β†’ ((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ↔ (πΉβ€˜π‘›) ∈ dom β—‘inl))
5118ffvelcdmda 5664 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ (πΉβ€˜π‘›) ∈ (𝐴 βŠ” 1o))
52 djuun 7080 . . . . . . . . . . . . 13 ((inl β€œ 𝐴) βˆͺ (inr β€œ 1o)) = (𝐴 βŠ” 1o)
5352eleq2i 2254 . . . . . . . . . . . 12 ((πΉβ€˜π‘›) ∈ ((inl β€œ 𝐴) βˆͺ (inr β€œ 1o)) ↔ (πΉβ€˜π‘›) ∈ (𝐴 βŠ” 1o))
5451, 53sylibr 134 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ (πΉβ€˜π‘›) ∈ ((inl β€œ 𝐴) βˆͺ (inr β€œ 1o)))
55 elun 3288 . . . . . . . . . . 11 ((πΉβ€˜π‘›) ∈ ((inl β€œ 𝐴) βˆͺ (inr β€œ 1o)) ↔ ((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ∨ (πΉβ€˜π‘›) ∈ (inr β€œ 1o)))
5654, 55sylib 122 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ ((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ∨ (πΉβ€˜π‘›) ∈ (inr β€œ 1o)))
5736, 50, 56mpjaodan 799 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ ((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ↔ (πΉβ€˜π‘›) ∈ dom β—‘inl))
5857pm5.32da 452 . . . . . . . 8 (πœ‘ β†’ ((𝑛 ∈ Ο‰ ∧ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴)) ↔ (𝑛 ∈ Ο‰ ∧ (πΉβ€˜π‘›) ∈ dom β—‘inl)))
5921, 28, 583bitr4d 220 . . . . . . 7 (πœ‘ β†’ (𝑛 ∈ dom (β—‘inl ∘ 𝐹) ↔ (𝑛 ∈ Ο‰ ∧ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴))))
6013dmeqi 4840 . . . . . . . 8 dom 𝐺 = dom (β—‘inl ∘ 𝐹)
6160eleq2i 2254 . . . . . . 7 (𝑛 ∈ dom 𝐺 ↔ 𝑛 ∈ dom (β—‘inl ∘ 𝐹))
62 fveq2 5527 . . . . . . . . 9 (π‘₯ = 𝑛 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘›))
6362eleq1d 2256 . . . . . . . 8 (π‘₯ = 𝑛 β†’ ((πΉβ€˜π‘₯) ∈ (inl β€œ 𝐴) ↔ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴)))
6463, 1elrab2 2908 . . . . . . 7 (𝑛 ∈ 𝑆 ↔ (𝑛 ∈ Ο‰ ∧ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴)))
6559, 61, 643bitr4g 223 . . . . . 6 (πœ‘ β†’ (𝑛 ∈ dom 𝐺 ↔ 𝑛 ∈ 𝑆))
6665eqrdv 2185 . . . . 5 (πœ‘ β†’ dom 𝐺 = 𝑆)
67 df-fn 5231 . . . . 5 (𝐺 Fn 𝑆 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝑆))
6816, 66, 67sylanbrc 417 . . . 4 (πœ‘ β†’ 𝐺 Fn 𝑆)
6913fveq1i 5528 . . . . . . 7 (πΊβ€˜π‘š) = ((β—‘inl ∘ 𝐹)β€˜π‘š)
7018adantr 276 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ 𝑆) β†’ 𝐹:Ο‰βŸΆ(𝐴 βŠ” 1o))
71 fveq2 5527 . . . . . . . . . . . . 13 (π‘₯ = π‘š β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘š))
7271eleq1d 2256 . . . . . . . . . . . 12 (π‘₯ = π‘š β†’ ((πΉβ€˜π‘₯) ∈ (inl β€œ 𝐴) ↔ (πΉβ€˜π‘š) ∈ (inl β€œ 𝐴)))
7372, 1elrab2 2908 . . . . . . . . . . 11 (π‘š ∈ 𝑆 ↔ (π‘š ∈ Ο‰ ∧ (πΉβ€˜π‘š) ∈ (inl β€œ 𝐴)))
7473biimpi 120 . . . . . . . . . 10 (π‘š ∈ 𝑆 β†’ (π‘š ∈ Ο‰ ∧ (πΉβ€˜π‘š) ∈ (inl β€œ 𝐴)))
7574adantl 277 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ 𝑆) β†’ (π‘š ∈ Ο‰ ∧ (πΉβ€˜π‘š) ∈ (inl β€œ 𝐴)))
7675simpld 112 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ 𝑆) β†’ π‘š ∈ Ο‰)
77 fvco3 5600 . . . . . . . 8 ((𝐹:Ο‰βŸΆ(𝐴 βŠ” 1o) ∧ π‘š ∈ Ο‰) β†’ ((β—‘inl ∘ 𝐹)β€˜π‘š) = (β—‘inlβ€˜(πΉβ€˜π‘š)))
7870, 76, 77syl2anc 411 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ 𝑆) β†’ ((β—‘inl ∘ 𝐹)β€˜π‘š) = (β—‘inlβ€˜(πΉβ€˜π‘š)))
7969, 78eqtrid 2232 . . . . . 6 ((πœ‘ ∧ π‘š ∈ 𝑆) β†’ (πΊβ€˜π‘š) = (β—‘inlβ€˜(πΉβ€˜π‘š)))
80 f1ofun 5475 . . . . . . . . . 10 (inl:V–1-1-ontoβ†’({βˆ…} Γ— V) β†’ Fun inl)
815, 80ax-mp 5 . . . . . . . . 9 Fun inl
82 fvelima 5580 . . . . . . . . 9 ((Fun inl ∧ (πΉβ€˜π‘š) ∈ (inl β€œ 𝐴)) β†’ βˆƒπ‘§ ∈ 𝐴 (inlβ€˜π‘§) = (πΉβ€˜π‘š))
8381, 82mpan 424 . . . . . . . 8 ((πΉβ€˜π‘š) ∈ (inl β€œ 𝐴) β†’ βˆƒπ‘§ ∈ 𝐴 (inlβ€˜π‘§) = (πΉβ€˜π‘š))
8475, 83simpl2im 386 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ 𝑆) β†’ βˆƒπ‘§ ∈ 𝐴 (inlβ€˜π‘§) = (πΉβ€˜π‘š))
85 simprr 531 . . . . . . . . 9 (((πœ‘ ∧ π‘š ∈ 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ (inlβ€˜π‘§) = (πΉβ€˜π‘š))) β†’ (inlβ€˜π‘§) = (πΉβ€˜π‘š))
8685fveq2d 5531 . . . . . . . 8 (((πœ‘ ∧ π‘š ∈ 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ (inlβ€˜π‘§) = (πΉβ€˜π‘š))) β†’ (β—‘inlβ€˜(inlβ€˜π‘§)) = (β—‘inlβ€˜(πΉβ€˜π‘š)))
87 vex 2752 . . . . . . . . . 10 𝑧 ∈ V
88 f1ocnvfv1 5791 . . . . . . . . . 10 ((inl:V–1-1-ontoβ†’({βˆ…} Γ— V) ∧ 𝑧 ∈ V) β†’ (β—‘inlβ€˜(inlβ€˜π‘§)) = 𝑧)
895, 87, 88mp2an 426 . . . . . . . . 9 (β—‘inlβ€˜(inlβ€˜π‘§)) = 𝑧
90 simprl 529 . . . . . . . . 9 (((πœ‘ ∧ π‘š ∈ 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ (inlβ€˜π‘§) = (πΉβ€˜π‘š))) β†’ 𝑧 ∈ 𝐴)
9189, 90eqeltrid 2274 . . . . . . . 8 (((πœ‘ ∧ π‘š ∈ 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ (inlβ€˜π‘§) = (πΉβ€˜π‘š))) β†’ (β—‘inlβ€˜(inlβ€˜π‘§)) ∈ 𝐴)
9286, 91eqeltrrd 2265 . . . . . . 7 (((πœ‘ ∧ π‘š ∈ 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ (inlβ€˜π‘§) = (πΉβ€˜π‘š))) β†’ (β—‘inlβ€˜(πΉβ€˜π‘š)) ∈ 𝐴)
9384, 92rexlimddv 2609 . . . . . 6 ((πœ‘ ∧ π‘š ∈ 𝑆) β†’ (β—‘inlβ€˜(πΉβ€˜π‘š)) ∈ 𝐴)
9479, 93eqeltrd 2264 . . . . 5 ((πœ‘ ∧ π‘š ∈ 𝑆) β†’ (πΊβ€˜π‘š) ∈ 𝐴)
9594ralrimiva 2560 . . . 4 (πœ‘ β†’ βˆ€π‘š ∈ 𝑆 (πΊβ€˜π‘š) ∈ 𝐴)
96 ffnfv 5687 . . . 4 (𝐺:π‘†βŸΆπ΄ ↔ (𝐺 Fn 𝑆 ∧ βˆ€π‘š ∈ 𝑆 (πΊβ€˜π‘š) ∈ 𝐴))
9768, 95, 96sylanbrc 417 . . 3 (πœ‘ β†’ 𝐺:π‘†βŸΆπ΄)
98 djulcl 7064 . . . . . . . 8 (π‘š ∈ 𝐴 β†’ (inlβ€˜π‘š) ∈ (𝐴 βŠ” 1o))
99 foelrn 5766 . . . . . . . . . 10 ((𝐹:ω–ontoβ†’(𝐴 βŠ” 1o) ∧ (inlβ€˜π‘š) ∈ (𝐴 βŠ” 1o)) β†’ βˆƒπ‘¦ ∈ Ο‰ (inlβ€˜π‘š) = (πΉβ€˜π‘¦))
1009, 99sylan 283 . . . . . . . . 9 ((πœ‘ ∧ (inlβ€˜π‘š) ∈ (𝐴 βŠ” 1o)) β†’ βˆƒπ‘¦ ∈ Ο‰ (inlβ€˜π‘š) = (πΉβ€˜π‘¦))
101 df-rex 2471 . . . . . . . . 9 (βˆƒπ‘¦ ∈ Ο‰ (inlβ€˜π‘š) = (πΉβ€˜π‘¦) ↔ βˆƒπ‘¦(𝑦 ∈ Ο‰ ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦)))
102100, 101sylib 122 . . . . . . . 8 ((πœ‘ ∧ (inlβ€˜π‘š) ∈ (𝐴 βŠ” 1o)) β†’ βˆƒπ‘¦(𝑦 ∈ Ο‰ ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦)))
10398, 102sylan2 286 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ 𝐴) β†’ βˆƒπ‘¦(𝑦 ∈ Ο‰ ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦)))
104 fveq2 5527 . . . . . . . . . . . . 13 (π‘₯ = 𝑦 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘¦))
105104eleq1d 2256 . . . . . . . . . . . 12 (π‘₯ = 𝑦 β†’ ((πΉβ€˜π‘₯) ∈ (inl β€œ 𝐴) ↔ (πΉβ€˜π‘¦) ∈ (inl β€œ 𝐴)))
106 simprl 529 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘š ∈ 𝐴) ∧ (𝑦 ∈ Ο‰ ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦))) β†’ 𝑦 ∈ Ο‰)
107 simprr 531 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘š ∈ 𝐴) ∧ (𝑦 ∈ Ο‰ ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦))) β†’ (inlβ€˜π‘š) = (πΉβ€˜π‘¦))
108 vex 2752 . . . . . . . . . . . . . . . 16 π‘š ∈ V
109 f1odm 5477 . . . . . . . . . . . . . . . . 17 (inl:V–1-1-ontoβ†’({βˆ…} Γ— V) β†’ dom inl = V)
1105, 109ax-mp 5 . . . . . . . . . . . . . . . 16 dom inl = V
111108, 110eleqtrri 2263 . . . . . . . . . . . . . . 15 π‘š ∈ dom inl
112 funfvima 5761 . . . . . . . . . . . . . . 15 ((Fun inl ∧ π‘š ∈ dom inl) β†’ (π‘š ∈ 𝐴 β†’ (inlβ€˜π‘š) ∈ (inl β€œ 𝐴)))
11381, 111, 112mp2an 426 . . . . . . . . . . . . . 14 (π‘š ∈ 𝐴 β†’ (inlβ€˜π‘š) ∈ (inl β€œ 𝐴))
114113ad2antlr 489 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘š ∈ 𝐴) ∧ (𝑦 ∈ Ο‰ ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦))) β†’ (inlβ€˜π‘š) ∈ (inl β€œ 𝐴))
115107, 114eqeltrrd 2265 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘š ∈ 𝐴) ∧ (𝑦 ∈ Ο‰ ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦))) β†’ (πΉβ€˜π‘¦) ∈ (inl β€œ 𝐴))
116105, 106, 115elrabd 2907 . . . . . . . . . . 11 (((πœ‘ ∧ π‘š ∈ 𝐴) ∧ (𝑦 ∈ Ο‰ ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦))) β†’ 𝑦 ∈ {π‘₯ ∈ Ο‰ ∣ (πΉβ€˜π‘₯) ∈ (inl β€œ 𝐴)})
117116, 1eleqtrrdi 2281 . . . . . . . . . 10 (((πœ‘ ∧ π‘š ∈ 𝐴) ∧ (𝑦 ∈ Ο‰ ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦))) β†’ 𝑦 ∈ 𝑆)
118117, 107jca 306 . . . . . . . . 9 (((πœ‘ ∧ π‘š ∈ 𝐴) ∧ (𝑦 ∈ Ο‰ ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦))) β†’ (𝑦 ∈ 𝑆 ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦)))
119118ex 115 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ 𝐴) β†’ ((𝑦 ∈ Ο‰ ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦)) β†’ (𝑦 ∈ 𝑆 ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦))))
120119eximdv 1890 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ 𝐴) β†’ (βˆƒπ‘¦(𝑦 ∈ Ο‰ ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦)) β†’ βˆƒπ‘¦(𝑦 ∈ 𝑆 ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦))))
121103, 120mpd 13 . . . . . 6 ((πœ‘ ∧ π‘š ∈ 𝐴) β†’ βˆƒπ‘¦(𝑦 ∈ 𝑆 ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦)))
122 df-rex 2471 . . . . . 6 (βˆƒπ‘¦ ∈ 𝑆 (inlβ€˜π‘š) = (πΉβ€˜π‘¦) ↔ βˆƒπ‘¦(𝑦 ∈ 𝑆 ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦)))
123121, 122sylibr 134 . . . . 5 ((πœ‘ ∧ π‘š ∈ 𝐴) β†’ βˆƒπ‘¦ ∈ 𝑆 (inlβ€˜π‘š) = (πΉβ€˜π‘¦))
124 f1ocnvfv1 5791 . . . . . . . . . 10 ((inl:V–1-1-ontoβ†’({βˆ…} Γ— V) ∧ π‘š ∈ V) β†’ (β—‘inlβ€˜(inlβ€˜π‘š)) = π‘š)
1255, 108, 124mp2an 426 . . . . . . . . 9 (β—‘inlβ€˜(inlβ€˜π‘š)) = π‘š
126 simpr 110 . . . . . . . . . 10 ((((πœ‘ ∧ π‘š ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦)) β†’ (inlβ€˜π‘š) = (πΉβ€˜π‘¦))
127126fveq2d 5531 . . . . . . . . 9 ((((πœ‘ ∧ π‘š ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦)) β†’ (β—‘inlβ€˜(inlβ€˜π‘š)) = (β—‘inlβ€˜(πΉβ€˜π‘¦)))
128125, 127eqtr3id 2234 . . . . . . . 8 ((((πœ‘ ∧ π‘š ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦)) β†’ π‘š = (β—‘inlβ€˜(πΉβ€˜π‘¦)))
12913fveq1i 5528 . . . . . . . . . 10 (πΊβ€˜π‘¦) = ((β—‘inl ∘ 𝐹)β€˜π‘¦)
13018ad2antrr 488 . . . . . . . . . . 11 (((πœ‘ ∧ π‘š ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) β†’ 𝐹:Ο‰βŸΆ(𝐴 βŠ” 1o))
1313sseli 3163 . . . . . . . . . . . 12 (𝑦 ∈ 𝑆 β†’ 𝑦 ∈ Ο‰)
132131adantl 277 . . . . . . . . . . 11 (((πœ‘ ∧ π‘š ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) β†’ 𝑦 ∈ Ο‰)
133 fvco3 5600 . . . . . . . . . . 11 ((𝐹:Ο‰βŸΆ(𝐴 βŠ” 1o) ∧ 𝑦 ∈ Ο‰) β†’ ((β—‘inl ∘ 𝐹)β€˜π‘¦) = (β—‘inlβ€˜(πΉβ€˜π‘¦)))
134130, 132, 133syl2anc 411 . . . . . . . . . 10 (((πœ‘ ∧ π‘š ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) β†’ ((β—‘inl ∘ 𝐹)β€˜π‘¦) = (β—‘inlβ€˜(πΉβ€˜π‘¦)))
135129, 134eqtrid 2232 . . . . . . . . 9 (((πœ‘ ∧ π‘š ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) β†’ (πΊβ€˜π‘¦) = (β—‘inlβ€˜(πΉβ€˜π‘¦)))
136135adantr 276 . . . . . . . 8 ((((πœ‘ ∧ π‘š ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦)) β†’ (πΊβ€˜π‘¦) = (β—‘inlβ€˜(πΉβ€˜π‘¦)))
137128, 136eqtr4d 2223 . . . . . . 7 ((((πœ‘ ∧ π‘š ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) ∧ (inlβ€˜π‘š) = (πΉβ€˜π‘¦)) β†’ π‘š = (πΊβ€˜π‘¦))
138137ex 115 . . . . . 6 (((πœ‘ ∧ π‘š ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) β†’ ((inlβ€˜π‘š) = (πΉβ€˜π‘¦) β†’ π‘š = (πΊβ€˜π‘¦)))
139138reximdva 2589 . . . . 5 ((πœ‘ ∧ π‘š ∈ 𝐴) β†’ (βˆƒπ‘¦ ∈ 𝑆 (inlβ€˜π‘š) = (πΉβ€˜π‘¦) β†’ βˆƒπ‘¦ ∈ 𝑆 π‘š = (πΊβ€˜π‘¦)))
140123, 139mpd 13 . . . 4 ((πœ‘ ∧ π‘š ∈ 𝐴) β†’ βˆƒπ‘¦ ∈ 𝑆 π‘š = (πΊβ€˜π‘¦))
141140ralrimiva 2560 . . 3 (πœ‘ β†’ βˆ€π‘š ∈ 𝐴 βˆƒπ‘¦ ∈ 𝑆 π‘š = (πΊβ€˜π‘¦))
142 dffo3 5676 . . 3 (𝐺:𝑆–onto→𝐴 ↔ (𝐺:π‘†βŸΆπ΄ ∧ βˆ€π‘š ∈ 𝐴 βˆƒπ‘¦ ∈ 𝑆 π‘š = (πΊβ€˜π‘¦)))
14397, 141, 142sylanbrc 417 . 2 (πœ‘ β†’ 𝐺:𝑆–onto→𝐴)
14453, 55bitr3i 186 . . . . . . 7 ((πΉβ€˜π‘›) ∈ (𝐴 βŠ” 1o) ↔ ((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ∨ (πΉβ€˜π‘›) ∈ (inr β€œ 1o)))
14551, 144sylib 122 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ ((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ∨ (πΉβ€˜π‘›) ∈ (inr β€œ 1o)))
14640orim2i 762 . . . . . 6 (((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ∨ (πΉβ€˜π‘›) ∈ (inr β€œ 1o)) β†’ ((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ∨ Β¬ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴)))
147145, 146syl 14 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ ((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ∨ Β¬ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴)))
148 df-dc 836 . . . . 5 (DECID (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ↔ ((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ∨ Β¬ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴)))
149147, 148sylibr 134 . . . 4 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ DECID (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴))
150 ibar 301 . . . . . . 7 (𝑛 ∈ Ο‰ β†’ ((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ↔ (𝑛 ∈ Ο‰ ∧ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴))))
151150adantl 277 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ ((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ↔ (𝑛 ∈ Ο‰ ∧ (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴))))
152151, 64bitr4di 198 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ ((πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ↔ 𝑛 ∈ 𝑆))
153152dcbid 839 . . . 4 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ (DECID (πΉβ€˜π‘›) ∈ (inl β€œ 𝐴) ↔ DECID 𝑛 ∈ 𝑆))
154149, 153mpbid 147 . . 3 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ DECID 𝑛 ∈ 𝑆)
155154ralrimiva 2560 . 2 (πœ‘ β†’ βˆ€π‘› ∈ Ο‰ DECID 𝑛 ∈ 𝑆)
1564, 143, 1553jca 1178 1 (πœ‘ β†’ (𝑆 βŠ† Ο‰ ∧ 𝐺:𝑆–onto→𝐴 ∧ βˆ€π‘› ∈ Ο‰ DECID 𝑛 ∈ 𝑆))
Colors of variables: wff set class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∨ wo 709  DECID wdc 835   ∧ w3a 979   = wceq 1363  βˆƒwex 1502   ∈ wcel 2158  βˆ€wral 2465  βˆƒwrex 2466  {crab 2469  Vcvv 2749   βˆͺ cun 3139   ∩ cin 3140   βŠ† wss 3141  βˆ…c0 3434  {csn 3604  Ο‰com 4601   Γ— cxp 4636  β—‘ccnv 4637  dom cdm 4638  ran crn 4639   β€œ cima 4641   ∘ ccom 4642  Fun wfun 5222   Fn wfn 5223  βŸΆwf 5224  β€“ontoβ†’wfo 5226  β€“1-1-ontoβ†’wf1o 5227  β€˜cfv 5228  1oc1o 6424   βŠ” cdju 7050  inlcinl 7058  inrcinr 7059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-1st 6155  df-2nd 6156  df-1o 6431  df-dju 7051  df-inl 7060  df-inr 7061
This theorem is referenced by:  ctssdclemr  7125  ctiunct  12455
  Copyright terms: Public domain W3C validator