Step | Hyp | Ref
| Expression |
1 | | ctssdccl.s |
. . . 4
⊢ 𝑆 = {𝑥 ∈ ω ∣ (𝐹‘𝑥) ∈ (inl “ 𝐴)} |
2 | | ssrab2 3213 |
. . . 4
⊢ {𝑥 ∈ ω ∣ (𝐹‘𝑥) ∈ (inl “ 𝐴)} ⊆ ω |
3 | 1, 2 | eqsstri 3160 |
. . 3
⊢ 𝑆 ⊆
ω |
4 | 3 | a1i 9 |
. 2
⊢ (𝜑 → 𝑆 ⊆ ω) |
5 | | djulf1o 6992 |
. . . . . . 7
⊢
inl:V–1-1-onto→({∅} × V) |
6 | | f1ocnv 5424 |
. . . . . . 7
⊢
(inl:V–1-1-onto→({∅} × V) → ◡inl:({∅} × V)–1-1-onto→V) |
7 | | f1ofun 5413 |
. . . . . . 7
⊢ (◡inl:({∅} × V)–1-1-onto→V → Fun ◡inl) |
8 | 5, 6, 7 | mp2b 8 |
. . . . . 6
⊢ Fun ◡inl |
9 | | ctssdccl.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:ω–onto→(𝐴 ⊔ 1o)) |
10 | | fofun 5390 |
. . . . . . 7
⊢ (𝐹:ω–onto→(𝐴 ⊔ 1o) → Fun 𝐹) |
11 | 9, 10 | syl 14 |
. . . . . 6
⊢ (𝜑 → Fun 𝐹) |
12 | | funco 5207 |
. . . . . . 7
⊢ ((Fun
◡inl ∧ Fun 𝐹) → Fun (◡inl ∘ 𝐹)) |
13 | | ctssdccl.g |
. . . . . . . 8
⊢ 𝐺 = (◡inl ∘ 𝐹) |
14 | 13 | funeqi 5188 |
. . . . . . 7
⊢ (Fun
𝐺 ↔ Fun (◡inl ∘ 𝐹)) |
15 | 12, 14 | sylibr 133 |
. . . . . 6
⊢ ((Fun
◡inl ∧ Fun 𝐹) → Fun 𝐺) |
16 | 8, 11, 15 | sylancr 411 |
. . . . 5
⊢ (𝜑 → Fun 𝐺) |
17 | | fof 5389 |
. . . . . . . . . . . 12
⊢ (𝐹:ω–onto→(𝐴 ⊔ 1o) → 𝐹:ω⟶(𝐴 ⊔
1o)) |
18 | 9, 17 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ω⟶(𝐴 ⊔ 1o)) |
19 | 18 | fdmd 5323 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝐹 = ω) |
20 | 19 | eleq2d 2227 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ dom 𝐹 ↔ 𝑛 ∈ ω)) |
21 | 20 | anbi1d 461 |
. . . . . . . 8
⊢ (𝜑 → ((𝑛 ∈ dom 𝐹 ∧ (𝐹‘𝑛) ∈ dom ◡inl) ↔ (𝑛 ∈ ω ∧ (𝐹‘𝑛) ∈ dom ◡inl))) |
22 | | dmcoss 4852 |
. . . . . . . . . . . 12
⊢ dom
(◡inl ∘ 𝐹) ⊆ dom 𝐹 |
23 | 22 | sseli 3124 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ dom (◡inl ∘ 𝐹) → 𝑛 ∈ dom 𝐹) |
24 | 23 | pm4.71ri 390 |
. . . . . . . . . 10
⊢ (𝑛 ∈ dom (◡inl ∘ 𝐹) ↔ (𝑛 ∈ dom 𝐹 ∧ 𝑛 ∈ dom (◡inl ∘ 𝐹))) |
25 | | dmfco 5533 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ 𝑛 ∈ dom 𝐹) → (𝑛 ∈ dom (◡inl ∘ 𝐹) ↔ (𝐹‘𝑛) ∈ dom ◡inl)) |
26 | 25 | pm5.32da 448 |
. . . . . . . . . 10
⊢ (Fun
𝐹 → ((𝑛 ∈ dom 𝐹 ∧ 𝑛 ∈ dom (◡inl ∘ 𝐹)) ↔ (𝑛 ∈ dom 𝐹 ∧ (𝐹‘𝑛) ∈ dom ◡inl))) |
27 | 24, 26 | syl5bb 191 |
. . . . . . . . 9
⊢ (Fun
𝐹 → (𝑛 ∈ dom (◡inl ∘ 𝐹) ↔ (𝑛 ∈ dom 𝐹 ∧ (𝐹‘𝑛) ∈ dom ◡inl))) |
28 | 11, 27 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (𝑛 ∈ dom (◡inl ∘ 𝐹) ↔ (𝑛 ∈ dom 𝐹 ∧ (𝐹‘𝑛) ∈ dom ◡inl))) |
29 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)) → (𝐹‘𝑛) ∈ (inl “ 𝐴)) |
30 | | imassrn 4936 |
. . . . . . . . . . . . . 14
⊢ (inl
“ 𝐴) ⊆ ran
inl |
31 | 30 | sseli 3124 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑛) ∈ (inl “ 𝐴) → (𝐹‘𝑛) ∈ ran inl) |
32 | 31 | adantl 275 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)) → (𝐹‘𝑛) ∈ ran inl) |
33 | | df-rn 4594 |
. . . . . . . . . . . . 13
⊢ ran inl =
dom ◡inl |
34 | 33 | eleq2i 2224 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑛) ∈ ran inl ↔ (𝐹‘𝑛) ∈ dom ◡inl) |
35 | 32, 34 | sylib 121 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)) → (𝐹‘𝑛) ∈ dom ◡inl) |
36 | 29, 35 | 2thd 174 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)) → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ (𝐹‘𝑛) ∈ dom ◡inl)) |
37 | | djuin 6998 |
. . . . . . . . . . . . . 14
⊢ ((inl
“ 𝐴) ∩ (inr
“ 1o)) = ∅ |
38 | | disjel 3448 |
. . . . . . . . . . . . . 14
⊢ ((((inl
“ 𝐴) ∩ (inr
“ 1o)) = ∅ ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)) → ¬ (𝐹‘𝑛) ∈ (inr “
1o)) |
39 | 37, 38 | mpan 421 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑛) ∈ (inl “ 𝐴) → ¬ (𝐹‘𝑛) ∈ (inr “
1o)) |
40 | 39 | con2i 617 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑛) ∈ (inr “ 1o) →
¬ (𝐹‘𝑛) ∈ (inl “ 𝐴)) |
41 | 40 | adantl 275 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inr “ 1o)) →
¬ (𝐹‘𝑛) ∈ (inl “ 𝐴)) |
42 | | djuin 6998 |
. . . . . . . . . . . . . . . 16
⊢ ((inl
“ V) ∩ (inr “ 1o)) = ∅ |
43 | | disjel 3448 |
. . . . . . . . . . . . . . . 16
⊢ ((((inl
“ V) ∩ (inr “ 1o)) = ∅ ∧ (𝐹‘𝑛) ∈ (inl “ V)) → ¬ (𝐹‘𝑛) ∈ (inr “
1o)) |
44 | 42, 43 | mpan 421 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑛) ∈ (inl “ V) → ¬ (𝐹‘𝑛) ∈ (inr “
1o)) |
45 | | dfrn4 5043 |
. . . . . . . . . . . . . . 15
⊢ ran inl =
(inl “ V) |
46 | 44, 45 | eleq2s 2252 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑛) ∈ ran inl → ¬ (𝐹‘𝑛) ∈ (inr “
1o)) |
47 | 46 | con2i 617 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑛) ∈ (inr “ 1o) →
¬ (𝐹‘𝑛) ∈ ran
inl) |
48 | 47 | adantl 275 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inr “ 1o)) →
¬ (𝐹‘𝑛) ∈ ran
inl) |
49 | 48, 34 | sylnib 666 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inr “ 1o)) →
¬ (𝐹‘𝑛) ∈ dom ◡inl) |
50 | 41, 49 | 2falsed 692 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ∈ (inr “ 1o)) →
((𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ (𝐹‘𝑛) ∈ dom ◡inl)) |
51 | 18 | ffvelrnda 5599 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐹‘𝑛) ∈ (𝐴 ⊔ 1o)) |
52 | | djuun 7001 |
. . . . . . . . . . . . 13
⊢ ((inl
“ 𝐴) ∪ (inr
“ 1o)) = (𝐴 ⊔ 1o) |
53 | 52 | eleq2i 2224 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑛) ∈ ((inl “ 𝐴) ∪ (inr “ 1o)) ↔
(𝐹‘𝑛) ∈ (𝐴 ⊔ 1o)) |
54 | 51, 53 | sylibr 133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐹‘𝑛) ∈ ((inl “ 𝐴) ∪ (inr “
1o))) |
55 | | elun 3248 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑛) ∈ ((inl “ 𝐴) ∪ (inr “ 1o)) ↔
((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ (𝐹‘𝑛) ∈ (inr “
1o))) |
56 | 54, 55 | sylib 121 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ (𝐹‘𝑛) ∈ (inr “
1o))) |
57 | 36, 50, 56 | mpjaodan 788 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ (𝐹‘𝑛) ∈ dom ◡inl)) |
58 | 57 | pm5.32da 448 |
. . . . . . . 8
⊢ (𝜑 → ((𝑛 ∈ ω ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)) ↔ (𝑛 ∈ ω ∧ (𝐹‘𝑛) ∈ dom ◡inl))) |
59 | 21, 28, 58 | 3bitr4d 219 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ dom (◡inl ∘ 𝐹) ↔ (𝑛 ∈ ω ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)))) |
60 | 13 | dmeqi 4784 |
. . . . . . . 8
⊢ dom 𝐺 = dom (◡inl ∘ 𝐹) |
61 | 60 | eleq2i 2224 |
. . . . . . 7
⊢ (𝑛 ∈ dom 𝐺 ↔ 𝑛 ∈ dom (◡inl ∘ 𝐹)) |
62 | | fveq2 5465 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (𝐹‘𝑥) = (𝐹‘𝑛)) |
63 | 62 | eleq1d 2226 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → ((𝐹‘𝑥) ∈ (inl “ 𝐴) ↔ (𝐹‘𝑛) ∈ (inl “ 𝐴))) |
64 | 63, 1 | elrab2 2871 |
. . . . . . 7
⊢ (𝑛 ∈ 𝑆 ↔ (𝑛 ∈ ω ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴))) |
65 | 59, 61, 64 | 3bitr4g 222 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ dom 𝐺 ↔ 𝑛 ∈ 𝑆)) |
66 | 65 | eqrdv 2155 |
. . . . 5
⊢ (𝜑 → dom 𝐺 = 𝑆) |
67 | | df-fn 5170 |
. . . . 5
⊢ (𝐺 Fn 𝑆 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝑆)) |
68 | 16, 66, 67 | sylanbrc 414 |
. . . 4
⊢ (𝜑 → 𝐺 Fn 𝑆) |
69 | 13 | fveq1i 5466 |
. . . . . . 7
⊢ (𝐺‘𝑚) = ((◡inl ∘ 𝐹)‘𝑚) |
70 | 18 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → 𝐹:ω⟶(𝐴 ⊔ 1o)) |
71 | | fveq2 5465 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑚 → (𝐹‘𝑥) = (𝐹‘𝑚)) |
72 | 71 | eleq1d 2226 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑚 → ((𝐹‘𝑥) ∈ (inl “ 𝐴) ↔ (𝐹‘𝑚) ∈ (inl “ 𝐴))) |
73 | 72, 1 | elrab2 2871 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ 𝑆 ↔ (𝑚 ∈ ω ∧ (𝐹‘𝑚) ∈ (inl “ 𝐴))) |
74 | 73 | biimpi 119 |
. . . . . . . . . 10
⊢ (𝑚 ∈ 𝑆 → (𝑚 ∈ ω ∧ (𝐹‘𝑚) ∈ (inl “ 𝐴))) |
75 | 74 | adantl 275 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝑚 ∈ ω ∧ (𝐹‘𝑚) ∈ (inl “ 𝐴))) |
76 | 75 | simpld 111 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → 𝑚 ∈ ω) |
77 | | fvco3 5536 |
. . . . . . . 8
⊢ ((𝐹:ω⟶(𝐴 ⊔ 1o) ∧
𝑚 ∈ ω) →
((◡inl ∘ 𝐹)‘𝑚) = (◡inl‘(𝐹‘𝑚))) |
78 | 70, 76, 77 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → ((◡inl ∘ 𝐹)‘𝑚) = (◡inl‘(𝐹‘𝑚))) |
79 | 69, 78 | syl5eq 2202 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝐺‘𝑚) = (◡inl‘(𝐹‘𝑚))) |
80 | | f1ofun 5413 |
. . . . . . . . . 10
⊢
(inl:V–1-1-onto→({∅} × V) → Fun
inl) |
81 | 5, 80 | ax-mp 5 |
. . . . . . . . 9
⊢ Fun
inl |
82 | | fvelima 5517 |
. . . . . . . . 9
⊢ ((Fun inl
∧ (𝐹‘𝑚) ∈ (inl “ 𝐴)) → ∃𝑧 ∈ 𝐴 (inl‘𝑧) = (𝐹‘𝑚)) |
83 | 81, 82 | mpan 421 |
. . . . . . . 8
⊢ ((𝐹‘𝑚) ∈ (inl “ 𝐴) → ∃𝑧 ∈ 𝐴 (inl‘𝑧) = (𝐹‘𝑚)) |
84 | 75, 83 | simpl2im 384 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → ∃𝑧 ∈ 𝐴 (inl‘𝑧) = (𝐹‘𝑚)) |
85 | | simprr 522 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ (inl‘𝑧) = (𝐹‘𝑚))) → (inl‘𝑧) = (𝐹‘𝑚)) |
86 | 85 | fveq2d 5469 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ (inl‘𝑧) = (𝐹‘𝑚))) → (◡inl‘(inl‘𝑧)) = (◡inl‘(𝐹‘𝑚))) |
87 | | vex 2715 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
88 | | f1ocnvfv1 5722 |
. . . . . . . . . 10
⊢
((inl:V–1-1-onto→({∅} × V) ∧ 𝑧 ∈ V) → (◡inl‘(inl‘𝑧)) = 𝑧) |
89 | 5, 87, 88 | mp2an 423 |
. . . . . . . . 9
⊢ (◡inl‘(inl‘𝑧)) = 𝑧 |
90 | | simprl 521 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ (inl‘𝑧) = (𝐹‘𝑚))) → 𝑧 ∈ 𝐴) |
91 | 89, 90 | eqeltrid 2244 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ (inl‘𝑧) = (𝐹‘𝑚))) → (◡inl‘(inl‘𝑧)) ∈ 𝐴) |
92 | 86, 91 | eqeltrrd 2235 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ (inl‘𝑧) = (𝐹‘𝑚))) → (◡inl‘(𝐹‘𝑚)) ∈ 𝐴) |
93 | 84, 92 | rexlimddv 2579 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (◡inl‘(𝐹‘𝑚)) ∈ 𝐴) |
94 | 79, 93 | eqeltrd 2234 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝐺‘𝑚) ∈ 𝐴) |
95 | 94 | ralrimiva 2530 |
. . . 4
⊢ (𝜑 → ∀𝑚 ∈ 𝑆 (𝐺‘𝑚) ∈ 𝐴) |
96 | | ffnfv 5622 |
. . . 4
⊢ (𝐺:𝑆⟶𝐴 ↔ (𝐺 Fn 𝑆 ∧ ∀𝑚 ∈ 𝑆 (𝐺‘𝑚) ∈ 𝐴)) |
97 | 68, 95, 96 | sylanbrc 414 |
. . 3
⊢ (𝜑 → 𝐺:𝑆⟶𝐴) |
98 | | djulcl 6985 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝐴 → (inl‘𝑚) ∈ (𝐴 ⊔ 1o)) |
99 | | foelrn 5698 |
. . . . . . . . . 10
⊢ ((𝐹:ω–onto→(𝐴 ⊔ 1o) ∧
(inl‘𝑚) ∈ (𝐴 ⊔ 1o)) →
∃𝑦 ∈ ω
(inl‘𝑚) = (𝐹‘𝑦)) |
100 | 9, 99 | sylan 281 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (inl‘𝑚) ∈ (𝐴 ⊔ 1o)) →
∃𝑦 ∈ ω
(inl‘𝑚) = (𝐹‘𝑦)) |
101 | | df-rex 2441 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
ω (inl‘𝑚) =
(𝐹‘𝑦) ↔ ∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) |
102 | 100, 101 | sylib 121 |
. . . . . . . 8
⊢ ((𝜑 ∧ (inl‘𝑚) ∈ (𝐴 ⊔ 1o)) →
∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) |
103 | 98, 102 | sylan2 284 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → ∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) |
104 | | fveq2 5465 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
105 | 104 | eleq1d 2226 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) ∈ (inl “ 𝐴) ↔ (𝐹‘𝑦) ∈ (inl “ 𝐴))) |
106 | | simprl 521 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) → 𝑦 ∈ ω) |
107 | | simprr 522 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) → (inl‘𝑚) = (𝐹‘𝑦)) |
108 | | vex 2715 |
. . . . . . . . . . . . . . . 16
⊢ 𝑚 ∈ V |
109 | | f1odm 5415 |
. . . . . . . . . . . . . . . . 17
⊢
(inl:V–1-1-onto→({∅} × V) → dom inl =
V) |
110 | 5, 109 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ dom inl =
V |
111 | 108, 110 | eleqtrri 2233 |
. . . . . . . . . . . . . . 15
⊢ 𝑚 ∈ dom inl |
112 | | funfvima 5693 |
. . . . . . . . . . . . . . 15
⊢ ((Fun inl
∧ 𝑚 ∈ dom inl)
→ (𝑚 ∈ 𝐴 → (inl‘𝑚) ∈ (inl “ 𝐴))) |
113 | 81, 111, 112 | mp2an 423 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ 𝐴 → (inl‘𝑚) ∈ (inl “ 𝐴)) |
114 | 113 | ad2antlr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) → (inl‘𝑚) ∈ (inl “ 𝐴)) |
115 | 107, 114 | eqeltrrd 2235 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) → (𝐹‘𝑦) ∈ (inl “ 𝐴)) |
116 | 105, 106,
115 | elrabd 2870 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) → 𝑦 ∈ {𝑥 ∈ ω ∣ (𝐹‘𝑥) ∈ (inl “ 𝐴)}) |
117 | 116, 1 | eleqtrrdi 2251 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) → 𝑦 ∈ 𝑆) |
118 | 117, 107 | jca 304 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦))) → (𝑦 ∈ 𝑆 ∧ (inl‘𝑚) = (𝐹‘𝑦))) |
119 | 118 | ex 114 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → ((𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦)) → (𝑦 ∈ 𝑆 ∧ (inl‘𝑚) = (𝐹‘𝑦)))) |
120 | 119 | eximdv 1860 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹‘𝑦)) → ∃𝑦(𝑦 ∈ 𝑆 ∧ (inl‘𝑚) = (𝐹‘𝑦)))) |
121 | 103, 120 | mpd 13 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → ∃𝑦(𝑦 ∈ 𝑆 ∧ (inl‘𝑚) = (𝐹‘𝑦))) |
122 | | df-rex 2441 |
. . . . . 6
⊢
(∃𝑦 ∈
𝑆 (inl‘𝑚) = (𝐹‘𝑦) ↔ ∃𝑦(𝑦 ∈ 𝑆 ∧ (inl‘𝑚) = (𝐹‘𝑦))) |
123 | 121, 122 | sylibr 133 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → ∃𝑦 ∈ 𝑆 (inl‘𝑚) = (𝐹‘𝑦)) |
124 | | f1ocnvfv1 5722 |
. . . . . . . . . 10
⊢
((inl:V–1-1-onto→({∅} × V) ∧ 𝑚 ∈ V) → (◡inl‘(inl‘𝑚)) = 𝑚) |
125 | 5, 108, 124 | mp2an 423 |
. . . . . . . . 9
⊢ (◡inl‘(inl‘𝑚)) = 𝑚 |
126 | | simpr 109 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) ∧ (inl‘𝑚) = (𝐹‘𝑦)) → (inl‘𝑚) = (𝐹‘𝑦)) |
127 | 126 | fveq2d 5469 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) ∧ (inl‘𝑚) = (𝐹‘𝑦)) → (◡inl‘(inl‘𝑚)) = (◡inl‘(𝐹‘𝑦))) |
128 | 125, 127 | syl5eqr 2204 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) ∧ (inl‘𝑚) = (𝐹‘𝑦)) → 𝑚 = (◡inl‘(𝐹‘𝑦))) |
129 | 13 | fveq1i 5466 |
. . . . . . . . . 10
⊢ (𝐺‘𝑦) = ((◡inl ∘ 𝐹)‘𝑦) |
130 | 18 | ad2antrr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → 𝐹:ω⟶(𝐴 ⊔ 1o)) |
131 | 3 | sseli 3124 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑆 → 𝑦 ∈ ω) |
132 | 131 | adantl 275 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ω) |
133 | | fvco3 5536 |
. . . . . . . . . . 11
⊢ ((𝐹:ω⟶(𝐴 ⊔ 1o) ∧
𝑦 ∈ ω) →
((◡inl ∘ 𝐹)‘𝑦) = (◡inl‘(𝐹‘𝑦))) |
134 | 130, 132,
133 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → ((◡inl ∘ 𝐹)‘𝑦) = (◡inl‘(𝐹‘𝑦))) |
135 | 129, 134 | syl5eq 2202 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = (◡inl‘(𝐹‘𝑦))) |
136 | 135 | adantr 274 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) ∧ (inl‘𝑚) = (𝐹‘𝑦)) → (𝐺‘𝑦) = (◡inl‘(𝐹‘𝑦))) |
137 | 128, 136 | eqtr4d 2193 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) ∧ (inl‘𝑚) = (𝐹‘𝑦)) → 𝑚 = (𝐺‘𝑦)) |
138 | 137 | ex 114 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → ((inl‘𝑚) = (𝐹‘𝑦) → 𝑚 = (𝐺‘𝑦))) |
139 | 138 | reximdva 2559 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (∃𝑦 ∈ 𝑆 (inl‘𝑚) = (𝐹‘𝑦) → ∃𝑦 ∈ 𝑆 𝑚 = (𝐺‘𝑦))) |
140 | 123, 139 | mpd 13 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → ∃𝑦 ∈ 𝑆 𝑚 = (𝐺‘𝑦)) |
141 | 140 | ralrimiva 2530 |
. . 3
⊢ (𝜑 → ∀𝑚 ∈ 𝐴 ∃𝑦 ∈ 𝑆 𝑚 = (𝐺‘𝑦)) |
142 | | dffo3 5611 |
. . 3
⊢ (𝐺:𝑆–onto→𝐴 ↔ (𝐺:𝑆⟶𝐴 ∧ ∀𝑚 ∈ 𝐴 ∃𝑦 ∈ 𝑆 𝑚 = (𝐺‘𝑦))) |
143 | 97, 141, 142 | sylanbrc 414 |
. 2
⊢ (𝜑 → 𝐺:𝑆–onto→𝐴) |
144 | 53, 55 | bitr3i 185 |
. . . . . . 7
⊢ ((𝐹‘𝑛) ∈ (𝐴 ⊔ 1o) ↔ ((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ (𝐹‘𝑛) ∈ (inr “
1o))) |
145 | 51, 144 | sylib 121 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ (𝐹‘𝑛) ∈ (inr “
1o))) |
146 | 40 | orim2i 751 |
. . . . . 6
⊢ (((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ (𝐹‘𝑛) ∈ (inr “ 1o)) →
((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ ¬ (𝐹‘𝑛) ∈ (inl “ 𝐴))) |
147 | 145, 146 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ ¬ (𝐹‘𝑛) ∈ (inl “ 𝐴))) |
148 | | df-dc 821 |
. . . . 5
⊢
(DECID (𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ ((𝐹‘𝑛) ∈ (inl “ 𝐴) ∨ ¬ (𝐹‘𝑛) ∈ (inl “ 𝐴))) |
149 | 147, 148 | sylibr 133 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → DECID
(𝐹‘𝑛) ∈ (inl “ 𝐴)) |
150 | | ibar 299 |
. . . . . . 7
⊢ (𝑛 ∈ ω → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ (𝑛 ∈ ω ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)))) |
151 | 150 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ (𝑛 ∈ ω ∧ (𝐹‘𝑛) ∈ (inl “ 𝐴)))) |
152 | 151, 64 | bitr4di 197 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ 𝑛 ∈ 𝑆)) |
153 | 152 | dcbid 824 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (DECID
(𝐹‘𝑛) ∈ (inl “ 𝐴) ↔ DECID 𝑛 ∈ 𝑆)) |
154 | 149, 153 | mpbid 146 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → DECID
𝑛 ∈ 𝑆) |
155 | 154 | ralrimiva 2530 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) |
156 | 4, 143, 155 | 3jca 1162 |
1
⊢ (𝜑 → (𝑆 ⊆ ω ∧ 𝐺:𝑆–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆)) |