ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssdccl GIF version

Theorem ctssdccl 7004
Description: A mapping from a decidable subset of the natural numbers onto a countable set. This is similar to one direction of ctssdc 7006 but expressed in terms of classes rather than . (Contributed by Jim Kingdon, 30-Oct-2023.)
Hypotheses
Ref Expression
ctssdccl.f (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
ctssdccl.s 𝑆 = {𝑥 ∈ ω ∣ (𝐹𝑥) ∈ (inl “ 𝐴)}
ctssdccl.g 𝐺 = (inl ∘ 𝐹)
Assertion
Ref Expression
ctssdccl (𝜑 → (𝑆 ⊆ ω ∧ 𝐺:𝑆onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑆))
Distinct variable groups:   𝑥,𝐴   𝑛,𝐹,𝑥   𝑛,𝐺   𝑆,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑛)   𝑆(𝑥)   𝐺(𝑥)

Proof of Theorem ctssdccl
Dummy variables 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctssdccl.s . . . 4 𝑆 = {𝑥 ∈ ω ∣ (𝐹𝑥) ∈ (inl “ 𝐴)}
2 ssrab2 3187 . . . 4 {𝑥 ∈ ω ∣ (𝐹𝑥) ∈ (inl “ 𝐴)} ⊆ ω
31, 2eqsstri 3134 . . 3 𝑆 ⊆ ω
43a1i 9 . 2 (𝜑𝑆 ⊆ ω)
5 djulf1o 6951 . . . . . . 7 inl:V–1-1-onto→({∅} × V)
6 f1ocnv 5388 . . . . . . 7 (inl:V–1-1-onto→({∅} × V) → inl:({∅} × V)–1-1-onto→V)
7 f1ofun 5377 . . . . . . 7 (inl:({∅} × V)–1-1-onto→V → Fun inl)
85, 6, 7mp2b 8 . . . . . 6 Fun inl
9 ctssdccl.f . . . . . . 7 (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
10 fofun 5354 . . . . . . 7 (𝐹:ω–onto→(𝐴 ⊔ 1o) → Fun 𝐹)
119, 10syl 14 . . . . . 6 (𝜑 → Fun 𝐹)
12 funco 5171 . . . . . . 7 ((Fun inl ∧ Fun 𝐹) → Fun (inl ∘ 𝐹))
13 ctssdccl.g . . . . . . . 8 𝐺 = (inl ∘ 𝐹)
1413funeqi 5152 . . . . . . 7 (Fun 𝐺 ↔ Fun (inl ∘ 𝐹))
1512, 14sylibr 133 . . . . . 6 ((Fun inl ∧ Fun 𝐹) → Fun 𝐺)
168, 11, 15sylancr 411 . . . . 5 (𝜑 → Fun 𝐺)
17 fof 5353 . . . . . . . . . . . 12 (𝐹:ω–onto→(𝐴 ⊔ 1o) → 𝐹:ω⟶(𝐴 ⊔ 1o))
189, 17syl 14 . . . . . . . . . . 11 (𝜑𝐹:ω⟶(𝐴 ⊔ 1o))
1918fdmd 5287 . . . . . . . . . 10 (𝜑 → dom 𝐹 = ω)
2019eleq2d 2210 . . . . . . . . 9 (𝜑 → (𝑛 ∈ dom 𝐹𝑛 ∈ ω))
2120anbi1d 461 . . . . . . . 8 (𝜑 → ((𝑛 ∈ dom 𝐹 ∧ (𝐹𝑛) ∈ dom inl) ↔ (𝑛 ∈ ω ∧ (𝐹𝑛) ∈ dom inl)))
22 dmcoss 4816 . . . . . . . . . . . 12 dom (inl ∘ 𝐹) ⊆ dom 𝐹
2322sseli 3098 . . . . . . . . . . 11 (𝑛 ∈ dom (inl ∘ 𝐹) → 𝑛 ∈ dom 𝐹)
2423pm4.71ri 390 . . . . . . . . . 10 (𝑛 ∈ dom (inl ∘ 𝐹) ↔ (𝑛 ∈ dom 𝐹𝑛 ∈ dom (inl ∘ 𝐹)))
25 dmfco 5497 . . . . . . . . . . 11 ((Fun 𝐹𝑛 ∈ dom 𝐹) → (𝑛 ∈ dom (inl ∘ 𝐹) ↔ (𝐹𝑛) ∈ dom inl))
2625pm5.32da 448 . . . . . . . . . 10 (Fun 𝐹 → ((𝑛 ∈ dom 𝐹𝑛 ∈ dom (inl ∘ 𝐹)) ↔ (𝑛 ∈ dom 𝐹 ∧ (𝐹𝑛) ∈ dom inl)))
2724, 26syl5bb 191 . . . . . . . . 9 (Fun 𝐹 → (𝑛 ∈ dom (inl ∘ 𝐹) ↔ (𝑛 ∈ dom 𝐹 ∧ (𝐹𝑛) ∈ dom inl)))
2811, 27syl 14 . . . . . . . 8 (𝜑 → (𝑛 ∈ dom (inl ∘ 𝐹) ↔ (𝑛 ∈ dom 𝐹 ∧ (𝐹𝑛) ∈ dom inl)))
29 simpr 109 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inl “ 𝐴)) → (𝐹𝑛) ∈ (inl “ 𝐴))
30 imassrn 4900 . . . . . . . . . . . . . 14 (inl “ 𝐴) ⊆ ran inl
3130sseli 3098 . . . . . . . . . . . . 13 ((𝐹𝑛) ∈ (inl “ 𝐴) → (𝐹𝑛) ∈ ran inl)
3231adantl 275 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inl “ 𝐴)) → (𝐹𝑛) ∈ ran inl)
33 df-rn 4558 . . . . . . . . . . . . 13 ran inl = dom inl
3433eleq2i 2207 . . . . . . . . . . . 12 ((𝐹𝑛) ∈ ran inl ↔ (𝐹𝑛) ∈ dom inl)
3532, 34sylib 121 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inl “ 𝐴)) → (𝐹𝑛) ∈ dom inl)
3629, 352thd 174 . . . . . . . . . 10 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inl “ 𝐴)) → ((𝐹𝑛) ∈ (inl “ 𝐴) ↔ (𝐹𝑛) ∈ dom inl))
37 djuin 6957 . . . . . . . . . . . . . 14 ((inl “ 𝐴) ∩ (inr “ 1o)) = ∅
38 disjel 3422 . . . . . . . . . . . . . 14 ((((inl “ 𝐴) ∩ (inr “ 1o)) = ∅ ∧ (𝐹𝑛) ∈ (inl “ 𝐴)) → ¬ (𝐹𝑛) ∈ (inr “ 1o))
3937, 38mpan 421 . . . . . . . . . . . . 13 ((𝐹𝑛) ∈ (inl “ 𝐴) → ¬ (𝐹𝑛) ∈ (inr “ 1o))
4039con2i 617 . . . . . . . . . . . 12 ((𝐹𝑛) ∈ (inr “ 1o) → ¬ (𝐹𝑛) ∈ (inl “ 𝐴))
4140adantl 275 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inr “ 1o)) → ¬ (𝐹𝑛) ∈ (inl “ 𝐴))
42 djuin 6957 . . . . . . . . . . . . . . . 16 ((inl “ V) ∩ (inr “ 1o)) = ∅
43 disjel 3422 . . . . . . . . . . . . . . . 16 ((((inl “ V) ∩ (inr “ 1o)) = ∅ ∧ (𝐹𝑛) ∈ (inl “ V)) → ¬ (𝐹𝑛) ∈ (inr “ 1o))
4442, 43mpan 421 . . . . . . . . . . . . . . 15 ((𝐹𝑛) ∈ (inl “ V) → ¬ (𝐹𝑛) ∈ (inr “ 1o))
45 dfrn4 5007 . . . . . . . . . . . . . . 15 ran inl = (inl “ V)
4644, 45eleq2s 2235 . . . . . . . . . . . . . 14 ((𝐹𝑛) ∈ ran inl → ¬ (𝐹𝑛) ∈ (inr “ 1o))
4746con2i 617 . . . . . . . . . . . . 13 ((𝐹𝑛) ∈ (inr “ 1o) → ¬ (𝐹𝑛) ∈ ran inl)
4847adantl 275 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inr “ 1o)) → ¬ (𝐹𝑛) ∈ ran inl)
4948, 34sylnib 666 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inr “ 1o)) → ¬ (𝐹𝑛) ∈ dom inl)
5041, 492falsed 692 . . . . . . . . . 10 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inr “ 1o)) → ((𝐹𝑛) ∈ (inl “ 𝐴) ↔ (𝐹𝑛) ∈ dom inl))
5118ffvelrnda 5563 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ω) → (𝐹𝑛) ∈ (𝐴 ⊔ 1o))
52 djuun 6960 . . . . . . . . . . . . 13 ((inl “ 𝐴) ∪ (inr “ 1o)) = (𝐴 ⊔ 1o)
5352eleq2i 2207 . . . . . . . . . . . 12 ((𝐹𝑛) ∈ ((inl “ 𝐴) ∪ (inr “ 1o)) ↔ (𝐹𝑛) ∈ (𝐴 ⊔ 1o))
5451, 53sylibr 133 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ω) → (𝐹𝑛) ∈ ((inl “ 𝐴) ∪ (inr “ 1o)))
55 elun 3222 . . . . . . . . . . 11 ((𝐹𝑛) ∈ ((inl “ 𝐴) ∪ (inr “ 1o)) ↔ ((𝐹𝑛) ∈ (inl “ 𝐴) ∨ (𝐹𝑛) ∈ (inr “ 1o)))
5654, 55sylib 121 . . . . . . . . . 10 ((𝜑𝑛 ∈ ω) → ((𝐹𝑛) ∈ (inl “ 𝐴) ∨ (𝐹𝑛) ∈ (inr “ 1o)))
5736, 50, 56mpjaodan 788 . . . . . . . . 9 ((𝜑𝑛 ∈ ω) → ((𝐹𝑛) ∈ (inl “ 𝐴) ↔ (𝐹𝑛) ∈ dom inl))
5857pm5.32da 448 . . . . . . . 8 (𝜑 → ((𝑛 ∈ ω ∧ (𝐹𝑛) ∈ (inl “ 𝐴)) ↔ (𝑛 ∈ ω ∧ (𝐹𝑛) ∈ dom inl)))
5921, 28, 583bitr4d 219 . . . . . . 7 (𝜑 → (𝑛 ∈ dom (inl ∘ 𝐹) ↔ (𝑛 ∈ ω ∧ (𝐹𝑛) ∈ (inl “ 𝐴))))
6013dmeqi 4748 . . . . . . . 8 dom 𝐺 = dom (inl ∘ 𝐹)
6160eleq2i 2207 . . . . . . 7 (𝑛 ∈ dom 𝐺𝑛 ∈ dom (inl ∘ 𝐹))
62 fveq2 5429 . . . . . . . . 9 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
6362eleq1d 2209 . . . . . . . 8 (𝑥 = 𝑛 → ((𝐹𝑥) ∈ (inl “ 𝐴) ↔ (𝐹𝑛) ∈ (inl “ 𝐴)))
6463, 1elrab2 2847 . . . . . . 7 (𝑛𝑆 ↔ (𝑛 ∈ ω ∧ (𝐹𝑛) ∈ (inl “ 𝐴)))
6559, 61, 643bitr4g 222 . . . . . 6 (𝜑 → (𝑛 ∈ dom 𝐺𝑛𝑆))
6665eqrdv 2138 . . . . 5 (𝜑 → dom 𝐺 = 𝑆)
67 df-fn 5134 . . . . 5 (𝐺 Fn 𝑆 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝑆))
6816, 66, 67sylanbrc 414 . . . 4 (𝜑𝐺 Fn 𝑆)
6913fveq1i 5430 . . . . . . 7 (𝐺𝑚) = ((inl ∘ 𝐹)‘𝑚)
7018adantr 274 . . . . . . . 8 ((𝜑𝑚𝑆) → 𝐹:ω⟶(𝐴 ⊔ 1o))
71 fveq2 5429 . . . . . . . . . . . . 13 (𝑥 = 𝑚 → (𝐹𝑥) = (𝐹𝑚))
7271eleq1d 2209 . . . . . . . . . . . 12 (𝑥 = 𝑚 → ((𝐹𝑥) ∈ (inl “ 𝐴) ↔ (𝐹𝑚) ∈ (inl “ 𝐴)))
7372, 1elrab2 2847 . . . . . . . . . . 11 (𝑚𝑆 ↔ (𝑚 ∈ ω ∧ (𝐹𝑚) ∈ (inl “ 𝐴)))
7473biimpi 119 . . . . . . . . . 10 (𝑚𝑆 → (𝑚 ∈ ω ∧ (𝐹𝑚) ∈ (inl “ 𝐴)))
7574adantl 275 . . . . . . . . 9 ((𝜑𝑚𝑆) → (𝑚 ∈ ω ∧ (𝐹𝑚) ∈ (inl “ 𝐴)))
7675simpld 111 . . . . . . . 8 ((𝜑𝑚𝑆) → 𝑚 ∈ ω)
77 fvco3 5500 . . . . . . . 8 ((𝐹:ω⟶(𝐴 ⊔ 1o) ∧ 𝑚 ∈ ω) → ((inl ∘ 𝐹)‘𝑚) = (inl‘(𝐹𝑚)))
7870, 76, 77syl2anc 409 . . . . . . 7 ((𝜑𝑚𝑆) → ((inl ∘ 𝐹)‘𝑚) = (inl‘(𝐹𝑚)))
7969, 78syl5eq 2185 . . . . . 6 ((𝜑𝑚𝑆) → (𝐺𝑚) = (inl‘(𝐹𝑚)))
80 f1ofun 5377 . . . . . . . . . 10 (inl:V–1-1-onto→({∅} × V) → Fun inl)
815, 80ax-mp 5 . . . . . . . . 9 Fun inl
82 fvelima 5481 . . . . . . . . 9 ((Fun inl ∧ (𝐹𝑚) ∈ (inl “ 𝐴)) → ∃𝑧𝐴 (inl‘𝑧) = (𝐹𝑚))
8381, 82mpan 421 . . . . . . . 8 ((𝐹𝑚) ∈ (inl “ 𝐴) → ∃𝑧𝐴 (inl‘𝑧) = (𝐹𝑚))
8475, 83simpl2im 384 . . . . . . 7 ((𝜑𝑚𝑆) → ∃𝑧𝐴 (inl‘𝑧) = (𝐹𝑚))
85 simprr 522 . . . . . . . . 9 (((𝜑𝑚𝑆) ∧ (𝑧𝐴 ∧ (inl‘𝑧) = (𝐹𝑚))) → (inl‘𝑧) = (𝐹𝑚))
8685fveq2d 5433 . . . . . . . 8 (((𝜑𝑚𝑆) ∧ (𝑧𝐴 ∧ (inl‘𝑧) = (𝐹𝑚))) → (inl‘(inl‘𝑧)) = (inl‘(𝐹𝑚)))
87 vex 2692 . . . . . . . . . 10 𝑧 ∈ V
88 f1ocnvfv1 5686 . . . . . . . . . 10 ((inl:V–1-1-onto→({∅} × V) ∧ 𝑧 ∈ V) → (inl‘(inl‘𝑧)) = 𝑧)
895, 87, 88mp2an 423 . . . . . . . . 9 (inl‘(inl‘𝑧)) = 𝑧
90 simprl 521 . . . . . . . . 9 (((𝜑𝑚𝑆) ∧ (𝑧𝐴 ∧ (inl‘𝑧) = (𝐹𝑚))) → 𝑧𝐴)
9189, 90eqeltrid 2227 . . . . . . . 8 (((𝜑𝑚𝑆) ∧ (𝑧𝐴 ∧ (inl‘𝑧) = (𝐹𝑚))) → (inl‘(inl‘𝑧)) ∈ 𝐴)
9286, 91eqeltrrd 2218 . . . . . . 7 (((𝜑𝑚𝑆) ∧ (𝑧𝐴 ∧ (inl‘𝑧) = (𝐹𝑚))) → (inl‘(𝐹𝑚)) ∈ 𝐴)
9384, 92rexlimddv 2557 . . . . . 6 ((𝜑𝑚𝑆) → (inl‘(𝐹𝑚)) ∈ 𝐴)
9479, 93eqeltrd 2217 . . . . 5 ((𝜑𝑚𝑆) → (𝐺𝑚) ∈ 𝐴)
9594ralrimiva 2508 . . . 4 (𝜑 → ∀𝑚𝑆 (𝐺𝑚) ∈ 𝐴)
96 ffnfv 5586 . . . 4 (𝐺:𝑆𝐴 ↔ (𝐺 Fn 𝑆 ∧ ∀𝑚𝑆 (𝐺𝑚) ∈ 𝐴))
9768, 95, 96sylanbrc 414 . . 3 (𝜑𝐺:𝑆𝐴)
98 djulcl 6944 . . . . . . . 8 (𝑚𝐴 → (inl‘𝑚) ∈ (𝐴 ⊔ 1o))
99 foelrn 5662 . . . . . . . . . 10 ((𝐹:ω–onto→(𝐴 ⊔ 1o) ∧ (inl‘𝑚) ∈ (𝐴 ⊔ 1o)) → ∃𝑦 ∈ ω (inl‘𝑚) = (𝐹𝑦))
1009, 99sylan 281 . . . . . . . . 9 ((𝜑 ∧ (inl‘𝑚) ∈ (𝐴 ⊔ 1o)) → ∃𝑦 ∈ ω (inl‘𝑚) = (𝐹𝑦))
101 df-rex 2423 . . . . . . . . 9 (∃𝑦 ∈ ω (inl‘𝑚) = (𝐹𝑦) ↔ ∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦)))
102100, 101sylib 121 . . . . . . . 8 ((𝜑 ∧ (inl‘𝑚) ∈ (𝐴 ⊔ 1o)) → ∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦)))
10398, 102sylan2 284 . . . . . . 7 ((𝜑𝑚𝐴) → ∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦)))
104 fveq2 5429 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
105104eleq1d 2209 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ (inl “ 𝐴) ↔ (𝐹𝑦) ∈ (inl “ 𝐴)))
106 simprl 521 . . . . . . . . . . . 12 (((𝜑𝑚𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦))) → 𝑦 ∈ ω)
107 simprr 522 . . . . . . . . . . . . 13 (((𝜑𝑚𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦))) → (inl‘𝑚) = (𝐹𝑦))
108 vex 2692 . . . . . . . . . . . . . . . 16 𝑚 ∈ V
109 f1odm 5379 . . . . . . . . . . . . . . . . 17 (inl:V–1-1-onto→({∅} × V) → dom inl = V)
1105, 109ax-mp 5 . . . . . . . . . . . . . . . 16 dom inl = V
111108, 110eleqtrri 2216 . . . . . . . . . . . . . . 15 𝑚 ∈ dom inl
112 funfvima 5657 . . . . . . . . . . . . . . 15 ((Fun inl ∧ 𝑚 ∈ dom inl) → (𝑚𝐴 → (inl‘𝑚) ∈ (inl “ 𝐴)))
11381, 111, 112mp2an 423 . . . . . . . . . . . . . 14 (𝑚𝐴 → (inl‘𝑚) ∈ (inl “ 𝐴))
114113ad2antlr 481 . . . . . . . . . . . . 13 (((𝜑𝑚𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦))) → (inl‘𝑚) ∈ (inl “ 𝐴))
115107, 114eqeltrrd 2218 . . . . . . . . . . . 12 (((𝜑𝑚𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦))) → (𝐹𝑦) ∈ (inl “ 𝐴))
116105, 106, 115elrabd 2846 . . . . . . . . . . 11 (((𝜑𝑚𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦))) → 𝑦 ∈ {𝑥 ∈ ω ∣ (𝐹𝑥) ∈ (inl “ 𝐴)})
117116, 1eleqtrrdi 2234 . . . . . . . . . 10 (((𝜑𝑚𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦))) → 𝑦𝑆)
118117, 107jca 304 . . . . . . . . 9 (((𝜑𝑚𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦))) → (𝑦𝑆 ∧ (inl‘𝑚) = (𝐹𝑦)))
119118ex 114 . . . . . . . 8 ((𝜑𝑚𝐴) → ((𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦)) → (𝑦𝑆 ∧ (inl‘𝑚) = (𝐹𝑦))))
120119eximdv 1853 . . . . . . 7 ((𝜑𝑚𝐴) → (∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦)) → ∃𝑦(𝑦𝑆 ∧ (inl‘𝑚) = (𝐹𝑦))))
121103, 120mpd 13 . . . . . 6 ((𝜑𝑚𝐴) → ∃𝑦(𝑦𝑆 ∧ (inl‘𝑚) = (𝐹𝑦)))
122 df-rex 2423 . . . . . 6 (∃𝑦𝑆 (inl‘𝑚) = (𝐹𝑦) ↔ ∃𝑦(𝑦𝑆 ∧ (inl‘𝑚) = (𝐹𝑦)))
123121, 122sylibr 133 . . . . 5 ((𝜑𝑚𝐴) → ∃𝑦𝑆 (inl‘𝑚) = (𝐹𝑦))
124 f1ocnvfv1 5686 . . . . . . . . . 10 ((inl:V–1-1-onto→({∅} × V) ∧ 𝑚 ∈ V) → (inl‘(inl‘𝑚)) = 𝑚)
1255, 108, 124mp2an 423 . . . . . . . . 9 (inl‘(inl‘𝑚)) = 𝑚
126 simpr 109 . . . . . . . . . 10 ((((𝜑𝑚𝐴) ∧ 𝑦𝑆) ∧ (inl‘𝑚) = (𝐹𝑦)) → (inl‘𝑚) = (𝐹𝑦))
127126fveq2d 5433 . . . . . . . . 9 ((((𝜑𝑚𝐴) ∧ 𝑦𝑆) ∧ (inl‘𝑚) = (𝐹𝑦)) → (inl‘(inl‘𝑚)) = (inl‘(𝐹𝑦)))
128125, 127syl5eqr 2187 . . . . . . . 8 ((((𝜑𝑚𝐴) ∧ 𝑦𝑆) ∧ (inl‘𝑚) = (𝐹𝑦)) → 𝑚 = (inl‘(𝐹𝑦)))
12913fveq1i 5430 . . . . . . . . . 10 (𝐺𝑦) = ((inl ∘ 𝐹)‘𝑦)
13018ad2antrr 480 . . . . . . . . . . 11 (((𝜑𝑚𝐴) ∧ 𝑦𝑆) → 𝐹:ω⟶(𝐴 ⊔ 1o))
1313sseli 3098 . . . . . . . . . . . 12 (𝑦𝑆𝑦 ∈ ω)
132131adantl 275 . . . . . . . . . . 11 (((𝜑𝑚𝐴) ∧ 𝑦𝑆) → 𝑦 ∈ ω)
133 fvco3 5500 . . . . . . . . . . 11 ((𝐹:ω⟶(𝐴 ⊔ 1o) ∧ 𝑦 ∈ ω) → ((inl ∘ 𝐹)‘𝑦) = (inl‘(𝐹𝑦)))
134130, 132, 133syl2anc 409 . . . . . . . . . 10 (((𝜑𝑚𝐴) ∧ 𝑦𝑆) → ((inl ∘ 𝐹)‘𝑦) = (inl‘(𝐹𝑦)))
135129, 134syl5eq 2185 . . . . . . . . 9 (((𝜑𝑚𝐴) ∧ 𝑦𝑆) → (𝐺𝑦) = (inl‘(𝐹𝑦)))
136135adantr 274 . . . . . . . 8 ((((𝜑𝑚𝐴) ∧ 𝑦𝑆) ∧ (inl‘𝑚) = (𝐹𝑦)) → (𝐺𝑦) = (inl‘(𝐹𝑦)))
137128, 136eqtr4d 2176 . . . . . . 7 ((((𝜑𝑚𝐴) ∧ 𝑦𝑆) ∧ (inl‘𝑚) = (𝐹𝑦)) → 𝑚 = (𝐺𝑦))
138137ex 114 . . . . . 6 (((𝜑𝑚𝐴) ∧ 𝑦𝑆) → ((inl‘𝑚) = (𝐹𝑦) → 𝑚 = (𝐺𝑦)))
139138reximdva 2537 . . . . 5 ((𝜑𝑚𝐴) → (∃𝑦𝑆 (inl‘𝑚) = (𝐹𝑦) → ∃𝑦𝑆 𝑚 = (𝐺𝑦)))
140123, 139mpd 13 . . . 4 ((𝜑𝑚𝐴) → ∃𝑦𝑆 𝑚 = (𝐺𝑦))
141140ralrimiva 2508 . . 3 (𝜑 → ∀𝑚𝐴𝑦𝑆 𝑚 = (𝐺𝑦))
142 dffo3 5575 . . 3 (𝐺:𝑆onto𝐴 ↔ (𝐺:𝑆𝐴 ∧ ∀𝑚𝐴𝑦𝑆 𝑚 = (𝐺𝑦)))
14397, 141, 142sylanbrc 414 . 2 (𝜑𝐺:𝑆onto𝐴)
14453, 55bitr3i 185 . . . . . . 7 ((𝐹𝑛) ∈ (𝐴 ⊔ 1o) ↔ ((𝐹𝑛) ∈ (inl “ 𝐴) ∨ (𝐹𝑛) ∈ (inr “ 1o)))
14551, 144sylib 121 . . . . . 6 ((𝜑𝑛 ∈ ω) → ((𝐹𝑛) ∈ (inl “ 𝐴) ∨ (𝐹𝑛) ∈ (inr “ 1o)))
14640orim2i 751 . . . . . 6 (((𝐹𝑛) ∈ (inl “ 𝐴) ∨ (𝐹𝑛) ∈ (inr “ 1o)) → ((𝐹𝑛) ∈ (inl “ 𝐴) ∨ ¬ (𝐹𝑛) ∈ (inl “ 𝐴)))
147145, 146syl 14 . . . . 5 ((𝜑𝑛 ∈ ω) → ((𝐹𝑛) ∈ (inl “ 𝐴) ∨ ¬ (𝐹𝑛) ∈ (inl “ 𝐴)))
148 df-dc 821 . . . . 5 (DECID (𝐹𝑛) ∈ (inl “ 𝐴) ↔ ((𝐹𝑛) ∈ (inl “ 𝐴) ∨ ¬ (𝐹𝑛) ∈ (inl “ 𝐴)))
149147, 148sylibr 133 . . . 4 ((𝜑𝑛 ∈ ω) → DECID (𝐹𝑛) ∈ (inl “ 𝐴))
150 ibar 299 . . . . . . 7 (𝑛 ∈ ω → ((𝐹𝑛) ∈ (inl “ 𝐴) ↔ (𝑛 ∈ ω ∧ (𝐹𝑛) ∈ (inl “ 𝐴))))
151150adantl 275 . . . . . 6 ((𝜑𝑛 ∈ ω) → ((𝐹𝑛) ∈ (inl “ 𝐴) ↔ (𝑛 ∈ ω ∧ (𝐹𝑛) ∈ (inl “ 𝐴))))
152151, 64syl6bbr 197 . . . . 5 ((𝜑𝑛 ∈ ω) → ((𝐹𝑛) ∈ (inl “ 𝐴) ↔ 𝑛𝑆))
153152dcbid 824 . . . 4 ((𝜑𝑛 ∈ ω) → (DECID (𝐹𝑛) ∈ (inl “ 𝐴) ↔ DECID 𝑛𝑆))
154149, 153mpbid 146 . . 3 ((𝜑𝑛 ∈ ω) → DECID 𝑛𝑆)
155154ralrimiva 2508 . 2 (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
1564, 143, 1553jca 1162 1 (𝜑 → (𝑆 ⊆ ω ∧ 𝐺:𝑆onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑆))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820  w3a 963   = wceq 1332  wex 1469  wcel 1481  wral 2417  wrex 2418  {crab 2421  Vcvv 2689  cun 3074  cin 3075  wss 3076  c0 3368  {csn 3532  ωcom 4512   × cxp 4545  ccnv 4546  dom cdm 4547  ran crn 4548  cima 4550  ccom 4551  Fun wfun 5125   Fn wfn 5126  wf 5127  ontowfo 5129  1-1-ontowf1o 5130  cfv 5131  1oc1o 6314  cdju 6930  inlcinl 6938  inrcinr 6939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047  df-1o 6321  df-dju 6931  df-inl 6940  df-inr 6941
This theorem is referenced by:  ctssdclemr  7005  ctiunct  11989
  Copyright terms: Public domain W3C validator