ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssdccl GIF version

Theorem ctssdccl 6996
Description: A mapping from a decidable subset of the natural numbers onto a countable set. This is similar to one direction of ctssdc 6998 but expressed in terms of classes rather than . (Contributed by Jim Kingdon, 30-Oct-2023.)
Hypotheses
Ref Expression
ctssdccl.f (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
ctssdccl.s 𝑆 = {𝑥 ∈ ω ∣ (𝐹𝑥) ∈ (inl “ 𝐴)}
ctssdccl.g 𝐺 = (inl ∘ 𝐹)
Assertion
Ref Expression
ctssdccl (𝜑 → (𝑆 ⊆ ω ∧ 𝐺:𝑆onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑆))
Distinct variable groups:   𝑥,𝐴   𝑛,𝐹,𝑥   𝑛,𝐺   𝑆,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑛)   𝑆(𝑥)   𝐺(𝑥)

Proof of Theorem ctssdccl
Dummy variables 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctssdccl.s . . . 4 𝑆 = {𝑥 ∈ ω ∣ (𝐹𝑥) ∈ (inl “ 𝐴)}
2 ssrab2 3182 . . . 4 {𝑥 ∈ ω ∣ (𝐹𝑥) ∈ (inl “ 𝐴)} ⊆ ω
31, 2eqsstri 3129 . . 3 𝑆 ⊆ ω
43a1i 9 . 2 (𝜑𝑆 ⊆ ω)
5 djulf1o 6943 . . . . . . 7 inl:V–1-1-onto→({∅} × V)
6 f1ocnv 5380 . . . . . . 7 (inl:V–1-1-onto→({∅} × V) → inl:({∅} × V)–1-1-onto→V)
7 f1ofun 5369 . . . . . . 7 (inl:({∅} × V)–1-1-onto→V → Fun inl)
85, 6, 7mp2b 8 . . . . . 6 Fun inl
9 ctssdccl.f . . . . . . 7 (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
10 fofun 5346 . . . . . . 7 (𝐹:ω–onto→(𝐴 ⊔ 1o) → Fun 𝐹)
119, 10syl 14 . . . . . 6 (𝜑 → Fun 𝐹)
12 funco 5163 . . . . . . 7 ((Fun inl ∧ Fun 𝐹) → Fun (inl ∘ 𝐹))
13 ctssdccl.g . . . . . . . 8 𝐺 = (inl ∘ 𝐹)
1413funeqi 5144 . . . . . . 7 (Fun 𝐺 ↔ Fun (inl ∘ 𝐹))
1512, 14sylibr 133 . . . . . 6 ((Fun inl ∧ Fun 𝐹) → Fun 𝐺)
168, 11, 15sylancr 410 . . . . 5 (𝜑 → Fun 𝐺)
17 fof 5345 . . . . . . . . . . . 12 (𝐹:ω–onto→(𝐴 ⊔ 1o) → 𝐹:ω⟶(𝐴 ⊔ 1o))
189, 17syl 14 . . . . . . . . . . 11 (𝜑𝐹:ω⟶(𝐴 ⊔ 1o))
1918fdmd 5279 . . . . . . . . . 10 (𝜑 → dom 𝐹 = ω)
2019eleq2d 2209 . . . . . . . . 9 (𝜑 → (𝑛 ∈ dom 𝐹𝑛 ∈ ω))
2120anbi1d 460 . . . . . . . 8 (𝜑 → ((𝑛 ∈ dom 𝐹 ∧ (𝐹𝑛) ∈ dom inl) ↔ (𝑛 ∈ ω ∧ (𝐹𝑛) ∈ dom inl)))
22 dmcoss 4808 . . . . . . . . . . . 12 dom (inl ∘ 𝐹) ⊆ dom 𝐹
2322sseli 3093 . . . . . . . . . . 11 (𝑛 ∈ dom (inl ∘ 𝐹) → 𝑛 ∈ dom 𝐹)
2423pm4.71ri 389 . . . . . . . . . 10 (𝑛 ∈ dom (inl ∘ 𝐹) ↔ (𝑛 ∈ dom 𝐹𝑛 ∈ dom (inl ∘ 𝐹)))
25 dmfco 5489 . . . . . . . . . . 11 ((Fun 𝐹𝑛 ∈ dom 𝐹) → (𝑛 ∈ dom (inl ∘ 𝐹) ↔ (𝐹𝑛) ∈ dom inl))
2625pm5.32da 447 . . . . . . . . . 10 (Fun 𝐹 → ((𝑛 ∈ dom 𝐹𝑛 ∈ dom (inl ∘ 𝐹)) ↔ (𝑛 ∈ dom 𝐹 ∧ (𝐹𝑛) ∈ dom inl)))
2724, 26syl5bb 191 . . . . . . . . 9 (Fun 𝐹 → (𝑛 ∈ dom (inl ∘ 𝐹) ↔ (𝑛 ∈ dom 𝐹 ∧ (𝐹𝑛) ∈ dom inl)))
2811, 27syl 14 . . . . . . . 8 (𝜑 → (𝑛 ∈ dom (inl ∘ 𝐹) ↔ (𝑛 ∈ dom 𝐹 ∧ (𝐹𝑛) ∈ dom inl)))
29 simpr 109 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inl “ 𝐴)) → (𝐹𝑛) ∈ (inl “ 𝐴))
30 imassrn 4892 . . . . . . . . . . . . . 14 (inl “ 𝐴) ⊆ ran inl
3130sseli 3093 . . . . . . . . . . . . 13 ((𝐹𝑛) ∈ (inl “ 𝐴) → (𝐹𝑛) ∈ ran inl)
3231adantl 275 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inl “ 𝐴)) → (𝐹𝑛) ∈ ran inl)
33 df-rn 4550 . . . . . . . . . . . . 13 ran inl = dom inl
3433eleq2i 2206 . . . . . . . . . . . 12 ((𝐹𝑛) ∈ ran inl ↔ (𝐹𝑛) ∈ dom inl)
3532, 34sylib 121 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inl “ 𝐴)) → (𝐹𝑛) ∈ dom inl)
3629, 352thd 174 . . . . . . . . . 10 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inl “ 𝐴)) → ((𝐹𝑛) ∈ (inl “ 𝐴) ↔ (𝐹𝑛) ∈ dom inl))
37 djuin 6949 . . . . . . . . . . . . . 14 ((inl “ 𝐴) ∩ (inr “ 1o)) = ∅
38 disjel 3417 . . . . . . . . . . . . . 14 ((((inl “ 𝐴) ∩ (inr “ 1o)) = ∅ ∧ (𝐹𝑛) ∈ (inl “ 𝐴)) → ¬ (𝐹𝑛) ∈ (inr “ 1o))
3937, 38mpan 420 . . . . . . . . . . . . 13 ((𝐹𝑛) ∈ (inl “ 𝐴) → ¬ (𝐹𝑛) ∈ (inr “ 1o))
4039con2i 616 . . . . . . . . . . . 12 ((𝐹𝑛) ∈ (inr “ 1o) → ¬ (𝐹𝑛) ∈ (inl “ 𝐴))
4140adantl 275 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inr “ 1o)) → ¬ (𝐹𝑛) ∈ (inl “ 𝐴))
42 djuin 6949 . . . . . . . . . . . . . . . 16 ((inl “ V) ∩ (inr “ 1o)) = ∅
43 disjel 3417 . . . . . . . . . . . . . . . 16 ((((inl “ V) ∩ (inr “ 1o)) = ∅ ∧ (𝐹𝑛) ∈ (inl “ V)) → ¬ (𝐹𝑛) ∈ (inr “ 1o))
4442, 43mpan 420 . . . . . . . . . . . . . . 15 ((𝐹𝑛) ∈ (inl “ V) → ¬ (𝐹𝑛) ∈ (inr “ 1o))
45 dfrn4 4999 . . . . . . . . . . . . . . 15 ran inl = (inl “ V)
4644, 45eleq2s 2234 . . . . . . . . . . . . . 14 ((𝐹𝑛) ∈ ran inl → ¬ (𝐹𝑛) ∈ (inr “ 1o))
4746con2i 616 . . . . . . . . . . . . 13 ((𝐹𝑛) ∈ (inr “ 1o) → ¬ (𝐹𝑛) ∈ ran inl)
4847adantl 275 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inr “ 1o)) → ¬ (𝐹𝑛) ∈ ran inl)
4948, 34sylnib 665 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inr “ 1o)) → ¬ (𝐹𝑛) ∈ dom inl)
5041, 492falsed 691 . . . . . . . . . 10 (((𝜑𝑛 ∈ ω) ∧ (𝐹𝑛) ∈ (inr “ 1o)) → ((𝐹𝑛) ∈ (inl “ 𝐴) ↔ (𝐹𝑛) ∈ dom inl))
5118ffvelrnda 5555 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ω) → (𝐹𝑛) ∈ (𝐴 ⊔ 1o))
52 djuun 6952 . . . . . . . . . . . . 13 ((inl “ 𝐴) ∪ (inr “ 1o)) = (𝐴 ⊔ 1o)
5352eleq2i 2206 . . . . . . . . . . . 12 ((𝐹𝑛) ∈ ((inl “ 𝐴) ∪ (inr “ 1o)) ↔ (𝐹𝑛) ∈ (𝐴 ⊔ 1o))
5451, 53sylibr 133 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ω) → (𝐹𝑛) ∈ ((inl “ 𝐴) ∪ (inr “ 1o)))
55 elun 3217 . . . . . . . . . . 11 ((𝐹𝑛) ∈ ((inl “ 𝐴) ∪ (inr “ 1o)) ↔ ((𝐹𝑛) ∈ (inl “ 𝐴) ∨ (𝐹𝑛) ∈ (inr “ 1o)))
5654, 55sylib 121 . . . . . . . . . 10 ((𝜑𝑛 ∈ ω) → ((𝐹𝑛) ∈ (inl “ 𝐴) ∨ (𝐹𝑛) ∈ (inr “ 1o)))
5736, 50, 56mpjaodan 787 . . . . . . . . 9 ((𝜑𝑛 ∈ ω) → ((𝐹𝑛) ∈ (inl “ 𝐴) ↔ (𝐹𝑛) ∈ dom inl))
5857pm5.32da 447 . . . . . . . 8 (𝜑 → ((𝑛 ∈ ω ∧ (𝐹𝑛) ∈ (inl “ 𝐴)) ↔ (𝑛 ∈ ω ∧ (𝐹𝑛) ∈ dom inl)))
5921, 28, 583bitr4d 219 . . . . . . 7 (𝜑 → (𝑛 ∈ dom (inl ∘ 𝐹) ↔ (𝑛 ∈ ω ∧ (𝐹𝑛) ∈ (inl “ 𝐴))))
6013dmeqi 4740 . . . . . . . 8 dom 𝐺 = dom (inl ∘ 𝐹)
6160eleq2i 2206 . . . . . . 7 (𝑛 ∈ dom 𝐺𝑛 ∈ dom (inl ∘ 𝐹))
62 fveq2 5421 . . . . . . . . 9 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
6362eleq1d 2208 . . . . . . . 8 (𝑥 = 𝑛 → ((𝐹𝑥) ∈ (inl “ 𝐴) ↔ (𝐹𝑛) ∈ (inl “ 𝐴)))
6463, 1elrab2 2843 . . . . . . 7 (𝑛𝑆 ↔ (𝑛 ∈ ω ∧ (𝐹𝑛) ∈ (inl “ 𝐴)))
6559, 61, 643bitr4g 222 . . . . . 6 (𝜑 → (𝑛 ∈ dom 𝐺𝑛𝑆))
6665eqrdv 2137 . . . . 5 (𝜑 → dom 𝐺 = 𝑆)
67 df-fn 5126 . . . . 5 (𝐺 Fn 𝑆 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝑆))
6816, 66, 67sylanbrc 413 . . . 4 (𝜑𝐺 Fn 𝑆)
6913fveq1i 5422 . . . . . . 7 (𝐺𝑚) = ((inl ∘ 𝐹)‘𝑚)
7018adantr 274 . . . . . . . 8 ((𝜑𝑚𝑆) → 𝐹:ω⟶(𝐴 ⊔ 1o))
71 fveq2 5421 . . . . . . . . . . . . 13 (𝑥 = 𝑚 → (𝐹𝑥) = (𝐹𝑚))
7271eleq1d 2208 . . . . . . . . . . . 12 (𝑥 = 𝑚 → ((𝐹𝑥) ∈ (inl “ 𝐴) ↔ (𝐹𝑚) ∈ (inl “ 𝐴)))
7372, 1elrab2 2843 . . . . . . . . . . 11 (𝑚𝑆 ↔ (𝑚 ∈ ω ∧ (𝐹𝑚) ∈ (inl “ 𝐴)))
7473biimpi 119 . . . . . . . . . 10 (𝑚𝑆 → (𝑚 ∈ ω ∧ (𝐹𝑚) ∈ (inl “ 𝐴)))
7574adantl 275 . . . . . . . . 9 ((𝜑𝑚𝑆) → (𝑚 ∈ ω ∧ (𝐹𝑚) ∈ (inl “ 𝐴)))
7675simpld 111 . . . . . . . 8 ((𝜑𝑚𝑆) → 𝑚 ∈ ω)
77 fvco3 5492 . . . . . . . 8 ((𝐹:ω⟶(𝐴 ⊔ 1o) ∧ 𝑚 ∈ ω) → ((inl ∘ 𝐹)‘𝑚) = (inl‘(𝐹𝑚)))
7870, 76, 77syl2anc 408 . . . . . . 7 ((𝜑𝑚𝑆) → ((inl ∘ 𝐹)‘𝑚) = (inl‘(𝐹𝑚)))
7969, 78syl5eq 2184 . . . . . 6 ((𝜑𝑚𝑆) → (𝐺𝑚) = (inl‘(𝐹𝑚)))
80 f1ofun 5369 . . . . . . . . . 10 (inl:V–1-1-onto→({∅} × V) → Fun inl)
815, 80ax-mp 5 . . . . . . . . 9 Fun inl
82 fvelima 5473 . . . . . . . . 9 ((Fun inl ∧ (𝐹𝑚) ∈ (inl “ 𝐴)) → ∃𝑧𝐴 (inl‘𝑧) = (𝐹𝑚))
8381, 82mpan 420 . . . . . . . 8 ((𝐹𝑚) ∈ (inl “ 𝐴) → ∃𝑧𝐴 (inl‘𝑧) = (𝐹𝑚))
8475, 83simpl2im 383 . . . . . . 7 ((𝜑𝑚𝑆) → ∃𝑧𝐴 (inl‘𝑧) = (𝐹𝑚))
85 simprr 521 . . . . . . . . 9 (((𝜑𝑚𝑆) ∧ (𝑧𝐴 ∧ (inl‘𝑧) = (𝐹𝑚))) → (inl‘𝑧) = (𝐹𝑚))
8685fveq2d 5425 . . . . . . . 8 (((𝜑𝑚𝑆) ∧ (𝑧𝐴 ∧ (inl‘𝑧) = (𝐹𝑚))) → (inl‘(inl‘𝑧)) = (inl‘(𝐹𝑚)))
87 vex 2689 . . . . . . . . . 10 𝑧 ∈ V
88 f1ocnvfv1 5678 . . . . . . . . . 10 ((inl:V–1-1-onto→({∅} × V) ∧ 𝑧 ∈ V) → (inl‘(inl‘𝑧)) = 𝑧)
895, 87, 88mp2an 422 . . . . . . . . 9 (inl‘(inl‘𝑧)) = 𝑧
90 simprl 520 . . . . . . . . 9 (((𝜑𝑚𝑆) ∧ (𝑧𝐴 ∧ (inl‘𝑧) = (𝐹𝑚))) → 𝑧𝐴)
9189, 90eqeltrid 2226 . . . . . . . 8 (((𝜑𝑚𝑆) ∧ (𝑧𝐴 ∧ (inl‘𝑧) = (𝐹𝑚))) → (inl‘(inl‘𝑧)) ∈ 𝐴)
9286, 91eqeltrrd 2217 . . . . . . 7 (((𝜑𝑚𝑆) ∧ (𝑧𝐴 ∧ (inl‘𝑧) = (𝐹𝑚))) → (inl‘(𝐹𝑚)) ∈ 𝐴)
9384, 92rexlimddv 2554 . . . . . 6 ((𝜑𝑚𝑆) → (inl‘(𝐹𝑚)) ∈ 𝐴)
9479, 93eqeltrd 2216 . . . . 5 ((𝜑𝑚𝑆) → (𝐺𝑚) ∈ 𝐴)
9594ralrimiva 2505 . . . 4 (𝜑 → ∀𝑚𝑆 (𝐺𝑚) ∈ 𝐴)
96 ffnfv 5578 . . . 4 (𝐺:𝑆𝐴 ↔ (𝐺 Fn 𝑆 ∧ ∀𝑚𝑆 (𝐺𝑚) ∈ 𝐴))
9768, 95, 96sylanbrc 413 . . 3 (𝜑𝐺:𝑆𝐴)
98 djulcl 6936 . . . . . . . 8 (𝑚𝐴 → (inl‘𝑚) ∈ (𝐴 ⊔ 1o))
99 foelrn 5654 . . . . . . . . . 10 ((𝐹:ω–onto→(𝐴 ⊔ 1o) ∧ (inl‘𝑚) ∈ (𝐴 ⊔ 1o)) → ∃𝑦 ∈ ω (inl‘𝑚) = (𝐹𝑦))
1009, 99sylan 281 . . . . . . . . 9 ((𝜑 ∧ (inl‘𝑚) ∈ (𝐴 ⊔ 1o)) → ∃𝑦 ∈ ω (inl‘𝑚) = (𝐹𝑦))
101 df-rex 2422 . . . . . . . . 9 (∃𝑦 ∈ ω (inl‘𝑚) = (𝐹𝑦) ↔ ∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦)))
102100, 101sylib 121 . . . . . . . 8 ((𝜑 ∧ (inl‘𝑚) ∈ (𝐴 ⊔ 1o)) → ∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦)))
10398, 102sylan2 284 . . . . . . 7 ((𝜑𝑚𝐴) → ∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦)))
104 fveq2 5421 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
105104eleq1d 2208 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ (inl “ 𝐴) ↔ (𝐹𝑦) ∈ (inl “ 𝐴)))
106 simprl 520 . . . . . . . . . . . 12 (((𝜑𝑚𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦))) → 𝑦 ∈ ω)
107 simprr 521 . . . . . . . . . . . . 13 (((𝜑𝑚𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦))) → (inl‘𝑚) = (𝐹𝑦))
108 vex 2689 . . . . . . . . . . . . . . . 16 𝑚 ∈ V
109 f1odm 5371 . . . . . . . . . . . . . . . . 17 (inl:V–1-1-onto→({∅} × V) → dom inl = V)
1105, 109ax-mp 5 . . . . . . . . . . . . . . . 16 dom inl = V
111108, 110eleqtrri 2215 . . . . . . . . . . . . . . 15 𝑚 ∈ dom inl
112 funfvima 5649 . . . . . . . . . . . . . . 15 ((Fun inl ∧ 𝑚 ∈ dom inl) → (𝑚𝐴 → (inl‘𝑚) ∈ (inl “ 𝐴)))
11381, 111, 112mp2an 422 . . . . . . . . . . . . . 14 (𝑚𝐴 → (inl‘𝑚) ∈ (inl “ 𝐴))
114113ad2antlr 480 . . . . . . . . . . . . 13 (((𝜑𝑚𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦))) → (inl‘𝑚) ∈ (inl “ 𝐴))
115107, 114eqeltrrd 2217 . . . . . . . . . . . 12 (((𝜑𝑚𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦))) → (𝐹𝑦) ∈ (inl “ 𝐴))
116105, 106, 115elrabd 2842 . . . . . . . . . . 11 (((𝜑𝑚𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦))) → 𝑦 ∈ {𝑥 ∈ ω ∣ (𝐹𝑥) ∈ (inl “ 𝐴)})
117116, 1eleqtrrdi 2233 . . . . . . . . . 10 (((𝜑𝑚𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦))) → 𝑦𝑆)
118117, 107jca 304 . . . . . . . . 9 (((𝜑𝑚𝐴) ∧ (𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦))) → (𝑦𝑆 ∧ (inl‘𝑚) = (𝐹𝑦)))
119118ex 114 . . . . . . . 8 ((𝜑𝑚𝐴) → ((𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦)) → (𝑦𝑆 ∧ (inl‘𝑚) = (𝐹𝑦))))
120119eximdv 1852 . . . . . . 7 ((𝜑𝑚𝐴) → (∃𝑦(𝑦 ∈ ω ∧ (inl‘𝑚) = (𝐹𝑦)) → ∃𝑦(𝑦𝑆 ∧ (inl‘𝑚) = (𝐹𝑦))))
121103, 120mpd 13 . . . . . 6 ((𝜑𝑚𝐴) → ∃𝑦(𝑦𝑆 ∧ (inl‘𝑚) = (𝐹𝑦)))
122 df-rex 2422 . . . . . 6 (∃𝑦𝑆 (inl‘𝑚) = (𝐹𝑦) ↔ ∃𝑦(𝑦𝑆 ∧ (inl‘𝑚) = (𝐹𝑦)))
123121, 122sylibr 133 . . . . 5 ((𝜑𝑚𝐴) → ∃𝑦𝑆 (inl‘𝑚) = (𝐹𝑦))
124 f1ocnvfv1 5678 . . . . . . . . . 10 ((inl:V–1-1-onto→({∅} × V) ∧ 𝑚 ∈ V) → (inl‘(inl‘𝑚)) = 𝑚)
1255, 108, 124mp2an 422 . . . . . . . . 9 (inl‘(inl‘𝑚)) = 𝑚
126 simpr 109 . . . . . . . . . 10 ((((𝜑𝑚𝐴) ∧ 𝑦𝑆) ∧ (inl‘𝑚) = (𝐹𝑦)) → (inl‘𝑚) = (𝐹𝑦))
127126fveq2d 5425 . . . . . . . . 9 ((((𝜑𝑚𝐴) ∧ 𝑦𝑆) ∧ (inl‘𝑚) = (𝐹𝑦)) → (inl‘(inl‘𝑚)) = (inl‘(𝐹𝑦)))
128125, 127syl5eqr 2186 . . . . . . . 8 ((((𝜑𝑚𝐴) ∧ 𝑦𝑆) ∧ (inl‘𝑚) = (𝐹𝑦)) → 𝑚 = (inl‘(𝐹𝑦)))
12913fveq1i 5422 . . . . . . . . . 10 (𝐺𝑦) = ((inl ∘ 𝐹)‘𝑦)
13018ad2antrr 479 . . . . . . . . . . 11 (((𝜑𝑚𝐴) ∧ 𝑦𝑆) → 𝐹:ω⟶(𝐴 ⊔ 1o))
1313sseli 3093 . . . . . . . . . . . 12 (𝑦𝑆𝑦 ∈ ω)
132131adantl 275 . . . . . . . . . . 11 (((𝜑𝑚𝐴) ∧ 𝑦𝑆) → 𝑦 ∈ ω)
133 fvco3 5492 . . . . . . . . . . 11 ((𝐹:ω⟶(𝐴 ⊔ 1o) ∧ 𝑦 ∈ ω) → ((inl ∘ 𝐹)‘𝑦) = (inl‘(𝐹𝑦)))
134130, 132, 133syl2anc 408 . . . . . . . . . 10 (((𝜑𝑚𝐴) ∧ 𝑦𝑆) → ((inl ∘ 𝐹)‘𝑦) = (inl‘(𝐹𝑦)))
135129, 134syl5eq 2184 . . . . . . . . 9 (((𝜑𝑚𝐴) ∧ 𝑦𝑆) → (𝐺𝑦) = (inl‘(𝐹𝑦)))
136135adantr 274 . . . . . . . 8 ((((𝜑𝑚𝐴) ∧ 𝑦𝑆) ∧ (inl‘𝑚) = (𝐹𝑦)) → (𝐺𝑦) = (inl‘(𝐹𝑦)))
137128, 136eqtr4d 2175 . . . . . . 7 ((((𝜑𝑚𝐴) ∧ 𝑦𝑆) ∧ (inl‘𝑚) = (𝐹𝑦)) → 𝑚 = (𝐺𝑦))
138137ex 114 . . . . . 6 (((𝜑𝑚𝐴) ∧ 𝑦𝑆) → ((inl‘𝑚) = (𝐹𝑦) → 𝑚 = (𝐺𝑦)))
139138reximdva 2534 . . . . 5 ((𝜑𝑚𝐴) → (∃𝑦𝑆 (inl‘𝑚) = (𝐹𝑦) → ∃𝑦𝑆 𝑚 = (𝐺𝑦)))
140123, 139mpd 13 . . . 4 ((𝜑𝑚𝐴) → ∃𝑦𝑆 𝑚 = (𝐺𝑦))
141140ralrimiva 2505 . . 3 (𝜑 → ∀𝑚𝐴𝑦𝑆 𝑚 = (𝐺𝑦))
142 dffo3 5567 . . 3 (𝐺:𝑆onto𝐴 ↔ (𝐺:𝑆𝐴 ∧ ∀𝑚𝐴𝑦𝑆 𝑚 = (𝐺𝑦)))
14397, 141, 142sylanbrc 413 . 2 (𝜑𝐺:𝑆onto𝐴)
14453, 55bitr3i 185 . . . . . . 7 ((𝐹𝑛) ∈ (𝐴 ⊔ 1o) ↔ ((𝐹𝑛) ∈ (inl “ 𝐴) ∨ (𝐹𝑛) ∈ (inr “ 1o)))
14551, 144sylib 121 . . . . . 6 ((𝜑𝑛 ∈ ω) → ((𝐹𝑛) ∈ (inl “ 𝐴) ∨ (𝐹𝑛) ∈ (inr “ 1o)))
14640orim2i 750 . . . . . 6 (((𝐹𝑛) ∈ (inl “ 𝐴) ∨ (𝐹𝑛) ∈ (inr “ 1o)) → ((𝐹𝑛) ∈ (inl “ 𝐴) ∨ ¬ (𝐹𝑛) ∈ (inl “ 𝐴)))
147145, 146syl 14 . . . . 5 ((𝜑𝑛 ∈ ω) → ((𝐹𝑛) ∈ (inl “ 𝐴) ∨ ¬ (𝐹𝑛) ∈ (inl “ 𝐴)))
148 df-dc 820 . . . . 5 (DECID (𝐹𝑛) ∈ (inl “ 𝐴) ↔ ((𝐹𝑛) ∈ (inl “ 𝐴) ∨ ¬ (𝐹𝑛) ∈ (inl “ 𝐴)))
149147, 148sylibr 133 . . . 4 ((𝜑𝑛 ∈ ω) → DECID (𝐹𝑛) ∈ (inl “ 𝐴))
150 ibar 299 . . . . . . 7 (𝑛 ∈ ω → ((𝐹𝑛) ∈ (inl “ 𝐴) ↔ (𝑛 ∈ ω ∧ (𝐹𝑛) ∈ (inl “ 𝐴))))
151150adantl 275 . . . . . 6 ((𝜑𝑛 ∈ ω) → ((𝐹𝑛) ∈ (inl “ 𝐴) ↔ (𝑛 ∈ ω ∧ (𝐹𝑛) ∈ (inl “ 𝐴))))
152151, 64syl6bbr 197 . . . . 5 ((𝜑𝑛 ∈ ω) → ((𝐹𝑛) ∈ (inl “ 𝐴) ↔ 𝑛𝑆))
153152dcbid 823 . . . 4 ((𝜑𝑛 ∈ ω) → (DECID (𝐹𝑛) ∈ (inl “ 𝐴) ↔ DECID 𝑛𝑆))
154149, 153mpbid 146 . . 3 ((𝜑𝑛 ∈ ω) → DECID 𝑛𝑆)
155154ralrimiva 2505 . 2 (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
1564, 143, 1553jca 1161 1 (𝜑 → (𝑆 ⊆ ω ∧ 𝐺:𝑆onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑆))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819  w3a 962   = wceq 1331  wex 1468  wcel 1480  wral 2416  wrex 2417  {crab 2420  Vcvv 2686  cun 3069  cin 3070  wss 3071  c0 3363  {csn 3527  ωcom 4504   × cxp 4537  ccnv 4538  dom cdm 4539  ran crn 4540  cima 4542  ccom 4543  Fun wfun 5117   Fn wfn 5118  wf 5119  ontowfo 5121  1-1-ontowf1o 5122  cfv 5123  1oc1o 6306  cdju 6922  inlcinl 6930  inrcinr 6931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-dju 6923  df-inl 6932  df-inr 6933
This theorem is referenced by:  ctssdclemr  6997  ctiunct  11953
  Copyright terms: Public domain W3C validator