ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuen GIF version

Theorem djuen 7278
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
djuen ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem djuen
StepHypRef Expression
1 encv 6805 . . . . . . . 8 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21adantr 276 . . . . . . 7 ((𝐴𝐵𝐶𝐷) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
32simpld 112 . . . . . 6 ((𝐴𝐵𝐶𝐷) → 𝐴 ∈ V)
4 eninl 7163 . . . . . 6 (𝐴 ∈ V → (inl “ 𝐴) ≈ 𝐴)
53, 4syl 14 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐴) ≈ 𝐴)
6 simpl 109 . . . . 5 ((𝐴𝐵𝐶𝐷) → 𝐴𝐵)
7 entr 6843 . . . . 5 (((inl “ 𝐴) ≈ 𝐴𝐴𝐵) → (inl “ 𝐴) ≈ 𝐵)
85, 6, 7syl2anc 411 . . . 4 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐴) ≈ 𝐵)
9 eninl 7163 . . . . . 6 (𝐵 ∈ V → (inl “ 𝐵) ≈ 𝐵)
102, 9simpl2im 386 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐵) ≈ 𝐵)
1110ensymd 6842 . . . 4 ((𝐴𝐵𝐶𝐷) → 𝐵 ≈ (inl “ 𝐵))
12 entr 6843 . . . 4 (((inl “ 𝐴) ≈ 𝐵𝐵 ≈ (inl “ 𝐵)) → (inl “ 𝐴) ≈ (inl “ 𝐵))
138, 11, 12syl2anc 411 . . 3 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐴) ≈ (inl “ 𝐵))
14 encv 6805 . . . . . . . 8 (𝐶𝐷 → (𝐶 ∈ V ∧ 𝐷 ∈ V))
1514adantl 277 . . . . . . 7 ((𝐴𝐵𝐶𝐷) → (𝐶 ∈ V ∧ 𝐷 ∈ V))
1615simpld 112 . . . . . 6 ((𝐴𝐵𝐶𝐷) → 𝐶 ∈ V)
17 eninr 7164 . . . . . 6 (𝐶 ∈ V → (inr “ 𝐶) ≈ 𝐶)
1816, 17syl 14 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐶) ≈ 𝐶)
19 entr 6843 . . . . 5 (((inr “ 𝐶) ≈ 𝐶𝐶𝐷) → (inr “ 𝐶) ≈ 𝐷)
2018, 19sylancom 420 . . . 4 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐶) ≈ 𝐷)
21 eninr 7164 . . . . . 6 (𝐷 ∈ V → (inr “ 𝐷) ≈ 𝐷)
2215, 21simpl2im 386 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐷) ≈ 𝐷)
2322ensymd 6842 . . . 4 ((𝐴𝐵𝐶𝐷) → 𝐷 ≈ (inr “ 𝐷))
24 entr 6843 . . . 4 (((inr “ 𝐶) ≈ 𝐷𝐷 ≈ (inr “ 𝐷)) → (inr “ 𝐶) ≈ (inr “ 𝐷))
2520, 23, 24syl2anc 411 . . 3 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐶) ≈ (inr “ 𝐷))
26 djuin 7130 . . . 4 ((inl “ 𝐴) ∩ (inr “ 𝐶)) = ∅
2726a1i 9 . . 3 ((𝐴𝐵𝐶𝐷) → ((inl “ 𝐴) ∩ (inr “ 𝐶)) = ∅)
28 djuin 7130 . . . 4 ((inl “ 𝐵) ∩ (inr “ 𝐷)) = ∅
2928a1i 9 . . 3 ((𝐴𝐵𝐶𝐷) → ((inl “ 𝐵) ∩ (inr “ 𝐷)) = ∅)
30 unen 6875 . . 3 ((((inl “ 𝐴) ≈ (inl “ 𝐵) ∧ (inr “ 𝐶) ≈ (inr “ 𝐷)) ∧ (((inl “ 𝐴) ∩ (inr “ 𝐶)) = ∅ ∧ ((inl “ 𝐵) ∩ (inr “ 𝐷)) = ∅)) → ((inl “ 𝐴) ∪ (inr “ 𝐶)) ≈ ((inl “ 𝐵) ∪ (inr “ 𝐷)))
3113, 25, 27, 29, 30syl22anc 1250 . 2 ((𝐴𝐵𝐶𝐷) → ((inl “ 𝐴) ∪ (inr “ 𝐶)) ≈ ((inl “ 𝐵) ∪ (inr “ 𝐷)))
32 djuun 7133 . 2 ((inl “ 𝐴) ∪ (inr “ 𝐶)) = (𝐴𝐶)
33 djuun 7133 . 2 ((inl “ 𝐵) ∪ (inr “ 𝐷)) = (𝐵𝐷)
3431, 32, 333brtr3g 4066 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  cin 3156  c0 3450   class class class wbr 4033  cima 4666  cen 6797  cdju 7103  inlcinl 7111  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-er 6592  df-en 6800  df-dju 7104  df-inl 7113  df-inr 7114
This theorem is referenced by:  djuenun  7279  exmidunben  12643  enctlem  12649
  Copyright terms: Public domain W3C validator