ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuen GIF version

Theorem djuen 7294
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
djuen ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem djuen
StepHypRef Expression
1 encv 6814 . . . . . . . 8 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21adantr 276 . . . . . . 7 ((𝐴𝐵𝐶𝐷) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
32simpld 112 . . . . . 6 ((𝐴𝐵𝐶𝐷) → 𝐴 ∈ V)
4 eninl 7172 . . . . . 6 (𝐴 ∈ V → (inl “ 𝐴) ≈ 𝐴)
53, 4syl 14 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐴) ≈ 𝐴)
6 simpl 109 . . . . 5 ((𝐴𝐵𝐶𝐷) → 𝐴𝐵)
7 entr 6852 . . . . 5 (((inl “ 𝐴) ≈ 𝐴𝐴𝐵) → (inl “ 𝐴) ≈ 𝐵)
85, 6, 7syl2anc 411 . . . 4 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐴) ≈ 𝐵)
9 eninl 7172 . . . . . 6 (𝐵 ∈ V → (inl “ 𝐵) ≈ 𝐵)
102, 9simpl2im 386 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐵) ≈ 𝐵)
1110ensymd 6851 . . . 4 ((𝐴𝐵𝐶𝐷) → 𝐵 ≈ (inl “ 𝐵))
12 entr 6852 . . . 4 (((inl “ 𝐴) ≈ 𝐵𝐵 ≈ (inl “ 𝐵)) → (inl “ 𝐴) ≈ (inl “ 𝐵))
138, 11, 12syl2anc 411 . . 3 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐴) ≈ (inl “ 𝐵))
14 encv 6814 . . . . . . . 8 (𝐶𝐷 → (𝐶 ∈ V ∧ 𝐷 ∈ V))
1514adantl 277 . . . . . . 7 ((𝐴𝐵𝐶𝐷) → (𝐶 ∈ V ∧ 𝐷 ∈ V))
1615simpld 112 . . . . . 6 ((𝐴𝐵𝐶𝐷) → 𝐶 ∈ V)
17 eninr 7173 . . . . . 6 (𝐶 ∈ V → (inr “ 𝐶) ≈ 𝐶)
1816, 17syl 14 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐶) ≈ 𝐶)
19 entr 6852 . . . . 5 (((inr “ 𝐶) ≈ 𝐶𝐶𝐷) → (inr “ 𝐶) ≈ 𝐷)
2018, 19sylancom 420 . . . 4 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐶) ≈ 𝐷)
21 eninr 7173 . . . . . 6 (𝐷 ∈ V → (inr “ 𝐷) ≈ 𝐷)
2215, 21simpl2im 386 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐷) ≈ 𝐷)
2322ensymd 6851 . . . 4 ((𝐴𝐵𝐶𝐷) → 𝐷 ≈ (inr “ 𝐷))
24 entr 6852 . . . 4 (((inr “ 𝐶) ≈ 𝐷𝐷 ≈ (inr “ 𝐷)) → (inr “ 𝐶) ≈ (inr “ 𝐷))
2520, 23, 24syl2anc 411 . . 3 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐶) ≈ (inr “ 𝐷))
26 djuin 7139 . . . 4 ((inl “ 𝐴) ∩ (inr “ 𝐶)) = ∅
2726a1i 9 . . 3 ((𝐴𝐵𝐶𝐷) → ((inl “ 𝐴) ∩ (inr “ 𝐶)) = ∅)
28 djuin 7139 . . . 4 ((inl “ 𝐵) ∩ (inr “ 𝐷)) = ∅
2928a1i 9 . . 3 ((𝐴𝐵𝐶𝐷) → ((inl “ 𝐵) ∩ (inr “ 𝐷)) = ∅)
30 unen 6884 . . 3 ((((inl “ 𝐴) ≈ (inl “ 𝐵) ∧ (inr “ 𝐶) ≈ (inr “ 𝐷)) ∧ (((inl “ 𝐴) ∩ (inr “ 𝐶)) = ∅ ∧ ((inl “ 𝐵) ∩ (inr “ 𝐷)) = ∅)) → ((inl “ 𝐴) ∪ (inr “ 𝐶)) ≈ ((inl “ 𝐵) ∪ (inr “ 𝐷)))
3113, 25, 27, 29, 30syl22anc 1250 . 2 ((𝐴𝐵𝐶𝐷) → ((inl “ 𝐴) ∪ (inr “ 𝐶)) ≈ ((inl “ 𝐵) ∪ (inr “ 𝐷)))
32 djuun 7142 . 2 ((inl “ 𝐴) ∪ (inr “ 𝐶)) = (𝐴𝐶)
33 djuun 7142 . 2 ((inl “ 𝐵) ∪ (inr “ 𝐷)) = (𝐵𝐷)
3431, 32, 333brtr3g 4067 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  cin 3156  c0 3451   class class class wbr 4034  cima 4667  cen 6806  cdju 7112  inlcinl 7120  inrcinr 7121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1st 6207  df-2nd 6208  df-1o 6483  df-er 6601  df-en 6809  df-dju 7113  df-inl 7122  df-inr 7123
This theorem is referenced by:  djuenun  7295  exmidunben  12668  enctlem  12674
  Copyright terms: Public domain W3C validator