ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuen GIF version

Theorem djuen 7188
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
djuen ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem djuen
StepHypRef Expression
1 encv 6724 . . . . . . . 8 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21adantr 274 . . . . . . 7 ((𝐴𝐵𝐶𝐷) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
32simpld 111 . . . . . 6 ((𝐴𝐵𝐶𝐷) → 𝐴 ∈ V)
4 eninl 7074 . . . . . 6 (𝐴 ∈ V → (inl “ 𝐴) ≈ 𝐴)
53, 4syl 14 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐴) ≈ 𝐴)
6 simpl 108 . . . . 5 ((𝐴𝐵𝐶𝐷) → 𝐴𝐵)
7 entr 6762 . . . . 5 (((inl “ 𝐴) ≈ 𝐴𝐴𝐵) → (inl “ 𝐴) ≈ 𝐵)
85, 6, 7syl2anc 409 . . . 4 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐴) ≈ 𝐵)
9 eninl 7074 . . . . . 6 (𝐵 ∈ V → (inl “ 𝐵) ≈ 𝐵)
102, 9simpl2im 384 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐵) ≈ 𝐵)
1110ensymd 6761 . . . 4 ((𝐴𝐵𝐶𝐷) → 𝐵 ≈ (inl “ 𝐵))
12 entr 6762 . . . 4 (((inl “ 𝐴) ≈ 𝐵𝐵 ≈ (inl “ 𝐵)) → (inl “ 𝐴) ≈ (inl “ 𝐵))
138, 11, 12syl2anc 409 . . 3 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐴) ≈ (inl “ 𝐵))
14 encv 6724 . . . . . . . 8 (𝐶𝐷 → (𝐶 ∈ V ∧ 𝐷 ∈ V))
1514adantl 275 . . . . . . 7 ((𝐴𝐵𝐶𝐷) → (𝐶 ∈ V ∧ 𝐷 ∈ V))
1615simpld 111 . . . . . 6 ((𝐴𝐵𝐶𝐷) → 𝐶 ∈ V)
17 eninr 7075 . . . . . 6 (𝐶 ∈ V → (inr “ 𝐶) ≈ 𝐶)
1816, 17syl 14 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐶) ≈ 𝐶)
19 entr 6762 . . . . 5 (((inr “ 𝐶) ≈ 𝐶𝐶𝐷) → (inr “ 𝐶) ≈ 𝐷)
2018, 19sylancom 418 . . . 4 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐶) ≈ 𝐷)
21 eninr 7075 . . . . . 6 (𝐷 ∈ V → (inr “ 𝐷) ≈ 𝐷)
2215, 21simpl2im 384 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐷) ≈ 𝐷)
2322ensymd 6761 . . . 4 ((𝐴𝐵𝐶𝐷) → 𝐷 ≈ (inr “ 𝐷))
24 entr 6762 . . . 4 (((inr “ 𝐶) ≈ 𝐷𝐷 ≈ (inr “ 𝐷)) → (inr “ 𝐶) ≈ (inr “ 𝐷))
2520, 23, 24syl2anc 409 . . 3 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐶) ≈ (inr “ 𝐷))
26 djuin 7041 . . . 4 ((inl “ 𝐴) ∩ (inr “ 𝐶)) = ∅
2726a1i 9 . . 3 ((𝐴𝐵𝐶𝐷) → ((inl “ 𝐴) ∩ (inr “ 𝐶)) = ∅)
28 djuin 7041 . . . 4 ((inl “ 𝐵) ∩ (inr “ 𝐷)) = ∅
2928a1i 9 . . 3 ((𝐴𝐵𝐶𝐷) → ((inl “ 𝐵) ∩ (inr “ 𝐷)) = ∅)
30 unen 6794 . . 3 ((((inl “ 𝐴) ≈ (inl “ 𝐵) ∧ (inr “ 𝐶) ≈ (inr “ 𝐷)) ∧ (((inl “ 𝐴) ∩ (inr “ 𝐶)) = ∅ ∧ ((inl “ 𝐵) ∩ (inr “ 𝐷)) = ∅)) → ((inl “ 𝐴) ∪ (inr “ 𝐶)) ≈ ((inl “ 𝐵) ∪ (inr “ 𝐷)))
3113, 25, 27, 29, 30syl22anc 1234 . 2 ((𝐴𝐵𝐶𝐷) → ((inl “ 𝐴) ∪ (inr “ 𝐶)) ≈ ((inl “ 𝐵) ∪ (inr “ 𝐷)))
32 djuun 7044 . 2 ((inl “ 𝐴) ∪ (inr “ 𝐶)) = (𝐴𝐶)
33 djuun 7044 . 2 ((inl “ 𝐵) ∪ (inr “ 𝐷)) = (𝐵𝐷)
3431, 32, 333brtr3g 4022 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  cun 3119  cin 3120  c0 3414   class class class wbr 3989  cima 4614  cen 6716  cdju 7014  inlcinl 7022  inrcinr 7023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-er 6513  df-en 6719  df-dju 7015  df-inl 7024  df-inr 7025
This theorem is referenced by:  djuenun  7189  exmidunben  12381  enctlem  12387
  Copyright terms: Public domain W3C validator