ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuen GIF version

Theorem djuen 7204
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
djuen ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem djuen
StepHypRef Expression
1 encv 6740 . . . . . . . 8 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21adantr 276 . . . . . . 7 ((𝐴𝐵𝐶𝐷) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
32simpld 112 . . . . . 6 ((𝐴𝐵𝐶𝐷) → 𝐴 ∈ V)
4 eninl 7090 . . . . . 6 (𝐴 ∈ V → (inl “ 𝐴) ≈ 𝐴)
53, 4syl 14 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐴) ≈ 𝐴)
6 simpl 109 . . . . 5 ((𝐴𝐵𝐶𝐷) → 𝐴𝐵)
7 entr 6778 . . . . 5 (((inl “ 𝐴) ≈ 𝐴𝐴𝐵) → (inl “ 𝐴) ≈ 𝐵)
85, 6, 7syl2anc 411 . . . 4 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐴) ≈ 𝐵)
9 eninl 7090 . . . . . 6 (𝐵 ∈ V → (inl “ 𝐵) ≈ 𝐵)
102, 9simpl2im 386 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐵) ≈ 𝐵)
1110ensymd 6777 . . . 4 ((𝐴𝐵𝐶𝐷) → 𝐵 ≈ (inl “ 𝐵))
12 entr 6778 . . . 4 (((inl “ 𝐴) ≈ 𝐵𝐵 ≈ (inl “ 𝐵)) → (inl “ 𝐴) ≈ (inl “ 𝐵))
138, 11, 12syl2anc 411 . . 3 ((𝐴𝐵𝐶𝐷) → (inl “ 𝐴) ≈ (inl “ 𝐵))
14 encv 6740 . . . . . . . 8 (𝐶𝐷 → (𝐶 ∈ V ∧ 𝐷 ∈ V))
1514adantl 277 . . . . . . 7 ((𝐴𝐵𝐶𝐷) → (𝐶 ∈ V ∧ 𝐷 ∈ V))
1615simpld 112 . . . . . 6 ((𝐴𝐵𝐶𝐷) → 𝐶 ∈ V)
17 eninr 7091 . . . . . 6 (𝐶 ∈ V → (inr “ 𝐶) ≈ 𝐶)
1816, 17syl 14 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐶) ≈ 𝐶)
19 entr 6778 . . . . 5 (((inr “ 𝐶) ≈ 𝐶𝐶𝐷) → (inr “ 𝐶) ≈ 𝐷)
2018, 19sylancom 420 . . . 4 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐶) ≈ 𝐷)
21 eninr 7091 . . . . . 6 (𝐷 ∈ V → (inr “ 𝐷) ≈ 𝐷)
2215, 21simpl2im 386 . . . . 5 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐷) ≈ 𝐷)
2322ensymd 6777 . . . 4 ((𝐴𝐵𝐶𝐷) → 𝐷 ≈ (inr “ 𝐷))
24 entr 6778 . . . 4 (((inr “ 𝐶) ≈ 𝐷𝐷 ≈ (inr “ 𝐷)) → (inr “ 𝐶) ≈ (inr “ 𝐷))
2520, 23, 24syl2anc 411 . . 3 ((𝐴𝐵𝐶𝐷) → (inr “ 𝐶) ≈ (inr “ 𝐷))
26 djuin 7057 . . . 4 ((inl “ 𝐴) ∩ (inr “ 𝐶)) = ∅
2726a1i 9 . . 3 ((𝐴𝐵𝐶𝐷) → ((inl “ 𝐴) ∩ (inr “ 𝐶)) = ∅)
28 djuin 7057 . . . 4 ((inl “ 𝐵) ∩ (inr “ 𝐷)) = ∅
2928a1i 9 . . 3 ((𝐴𝐵𝐶𝐷) → ((inl “ 𝐵) ∩ (inr “ 𝐷)) = ∅)
30 unen 6810 . . 3 ((((inl “ 𝐴) ≈ (inl “ 𝐵) ∧ (inr “ 𝐶) ≈ (inr “ 𝐷)) ∧ (((inl “ 𝐴) ∩ (inr “ 𝐶)) = ∅ ∧ ((inl “ 𝐵) ∩ (inr “ 𝐷)) = ∅)) → ((inl “ 𝐴) ∪ (inr “ 𝐶)) ≈ ((inl “ 𝐵) ∪ (inr “ 𝐷)))
3113, 25, 27, 29, 30syl22anc 1239 . 2 ((𝐴𝐵𝐶𝐷) → ((inl “ 𝐴) ∪ (inr “ 𝐶)) ≈ ((inl “ 𝐵) ∪ (inr “ 𝐷)))
32 djuun 7060 . 2 ((inl “ 𝐴) ∪ (inr “ 𝐶)) = (𝐴𝐶)
33 djuun 7060 . 2 ((inl “ 𝐵) ∪ (inr “ 𝐷)) = (𝐵𝐷)
3431, 32, 333brtr3g 4033 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  Vcvv 2737  cun 3127  cin 3128  c0 3422   class class class wbr 4000  cima 4626  cen 6732  cdju 7030  inlcinl 7038  inrcinr 7039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-1st 6135  df-2nd 6136  df-1o 6411  df-er 6529  df-en 6735  df-dju 7031  df-inl 7040  df-inr 7041
This theorem is referenced by:  djuenun  7205  exmidunben  12410  enctlem  12416
  Copyright terms: Public domain W3C validator