ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpl2im Unicode version

Theorem simpl2im 384
Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.)
Hypotheses
Ref Expression
simpl2im.1  |-  ( ph  ->  ( ps  /\  ch ) )
simpl2im.2  |-  ( ch 
->  th )
Assertion
Ref Expression
simpl2im  |-  ( ph  ->  th )

Proof of Theorem simpl2im
StepHypRef Expression
1 simpl2im.1 . 2  |-  ( ph  ->  ( ps  /\  ch ) )
2 simpr 109 . 2  |-  ( ( ps  /\  ch )  ->  ch )
3 simpl2im.2 . 2  |-  ( ch 
->  th )
41, 2, 33syl 17 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106
This theorem is referenced by:  ctssdccl  7076  enumct  7080  djuen  7167  ndvdssub  11867  xmeteq0  12999  xmettri2  13001  metcnpi  13155  metcnpi2  13156  dvbssntrcntop  13293
  Copyright terms: Public domain W3C validator