ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrpidmndm GIF version

Theorem sgrpidmndm 13302
Description: A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
Hypotheses
Ref Expression
sgrpidmnd.b 𝐵 = (Base‘𝐺)
sgrpidmnd.0 0 = (0g𝐺)
Assertion
Ref Expression
sgrpidmndm ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → 𝐺 ∈ Mnd)
Distinct variable groups:   𝐵,𝑒,𝑤   𝑒,𝐺,𝑤   𝑤, 0   𝑤,𝑒
Allowed substitution hint:   0 (𝑒)

Proof of Theorem sgrpidmndm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 542 . . . . . . . . . 10 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑒𝐵)
2 simpllr 534 . . . . . . . . . . 11 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑤𝑒)
3219.8ad 1615 . . . . . . . . . 10 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → ∃𝑤 𝑤𝑒)
4 simplr 528 . . . . . . . . . . 11 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑒 = 0 )
5 sgrpidmnd.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
6 eqid 2206 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
7 sgrpidmnd.0 . . . . . . . . . . . . . 14 0 = (0g𝐺)
85, 6, 7grpidvalg 13255 . . . . . . . . . . . . 13 (𝐺 ∈ Smgrp → 0 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥))))
98eqeq2d 2218 . . . . . . . . . . . 12 (𝐺 ∈ Smgrp → (𝑒 = 0𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))))
109ad4antr 494 . . . . . . . . . . 11 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → (𝑒 = 0𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))))
114, 10mpbid 147 . . . . . . . . . 10 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥))))
121, 3, 113jca 1180 . . . . . . . . 9 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → (𝑒𝐵 ∧ ∃𝑤 𝑤𝑒𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))))
13 simpr 110 . . . . . . . . 9 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑥𝐵)
14 eleq1w 2267 . . . . . . . . . . . 12 (𝑦 = 𝑒 → (𝑦𝐵𝑒𝐵))
15 oveq1 5961 . . . . . . . . . . . . . 14 (𝑦 = 𝑒 → (𝑦(+g𝐺)𝑥) = (𝑒(+g𝐺)𝑥))
1615eqeq1d 2215 . . . . . . . . . . . . 13 (𝑦 = 𝑒 → ((𝑦(+g𝐺)𝑥) = 𝑥 ↔ (𝑒(+g𝐺)𝑥) = 𝑥))
1716ovanraleqv 5978 . . . . . . . . . . . 12 (𝑦 = 𝑒 → (∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥) ↔ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
1814, 17anbi12d 473 . . . . . . . . . . 11 (𝑦 = 𝑒 → ((𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)) ↔ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
1918iotam 5269 . . . . . . . . . 10 ((𝑒𝐵 ∧ ∃𝑤 𝑤𝑒𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))) → (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
20 rsp 2554 . . . . . . . . . 10 (∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2119, 20simpl2im 386 . . . . . . . . 9 ((𝑒𝐵 ∧ ∃𝑤 𝑤𝑒𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2212, 13, 21sylc 62 . . . . . . . 8 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))
2322ralrimiva 2580 . . . . . . 7 ((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))
2423exp31 364 . . . . . 6 ((𝐺 ∈ Smgrp ∧ 𝑒𝐵) → (𝑤𝑒 → (𝑒 = 0 → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
2524exlimdv 1843 . . . . 5 ((𝐺 ∈ Smgrp ∧ 𝑒𝐵) → (∃𝑤 𝑤𝑒 → (𝑒 = 0 → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
2625impd 254 . . . 4 ((𝐺 ∈ Smgrp ∧ 𝑒𝐵) → ((∃𝑤 𝑤𝑒𝑒 = 0 ) → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2726reximdva 2609 . . 3 (𝐺 ∈ Smgrp → (∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 ) → ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2827imdistani 445 . 2 ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
295, 6ismnddef 13300 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
3028, 29sylibr 134 1 ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → 𝐺 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wex 1516  wcel 2177  wral 2485  wrex 2486  cio 5236  cfv 5277  (class class class)co 5954  Basecbs 12882  +gcplusg 12959  0gc0g 13138  Smgrpcsgrp 13283  Mndcmnd 13298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-iota 5238  df-fun 5279  df-fn 5280  df-fv 5285  df-riota 5909  df-ov 5957  df-inn 9050  df-2 9108  df-ndx 12885  df-slot 12886  df-base 12888  df-plusg 12972  df-0g 13140  df-mnd 13299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator