ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrpidmndm GIF version

Theorem sgrpidmndm 13439
Description: A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
Hypotheses
Ref Expression
sgrpidmnd.b 𝐵 = (Base‘𝐺)
sgrpidmnd.0 0 = (0g𝐺)
Assertion
Ref Expression
sgrpidmndm ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → 𝐺 ∈ Mnd)
Distinct variable groups:   𝐵,𝑒,𝑤   𝑒,𝐺,𝑤   𝑤, 0   𝑤,𝑒
Allowed substitution hint:   0 (𝑒)

Proof of Theorem sgrpidmndm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 542 . . . . . . . . . 10 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑒𝐵)
2 simpllr 534 . . . . . . . . . . 11 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑤𝑒)
3219.8ad 1637 . . . . . . . . . 10 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → ∃𝑤 𝑤𝑒)
4 simplr 528 . . . . . . . . . . 11 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑒 = 0 )
5 sgrpidmnd.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
6 eqid 2229 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
7 sgrpidmnd.0 . . . . . . . . . . . . . 14 0 = (0g𝐺)
85, 6, 7grpidvalg 13392 . . . . . . . . . . . . 13 (𝐺 ∈ Smgrp → 0 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥))))
98eqeq2d 2241 . . . . . . . . . . . 12 (𝐺 ∈ Smgrp → (𝑒 = 0𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))))
109ad4antr 494 . . . . . . . . . . 11 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → (𝑒 = 0𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))))
114, 10mpbid 147 . . . . . . . . . 10 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥))))
121, 3, 113jca 1201 . . . . . . . . 9 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → (𝑒𝐵 ∧ ∃𝑤 𝑤𝑒𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))))
13 simpr 110 . . . . . . . . 9 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑥𝐵)
14 eleq1w 2290 . . . . . . . . . . . 12 (𝑦 = 𝑒 → (𝑦𝐵𝑒𝐵))
15 oveq1 6001 . . . . . . . . . . . . . 14 (𝑦 = 𝑒 → (𝑦(+g𝐺)𝑥) = (𝑒(+g𝐺)𝑥))
1615eqeq1d 2238 . . . . . . . . . . . . 13 (𝑦 = 𝑒 → ((𝑦(+g𝐺)𝑥) = 𝑥 ↔ (𝑒(+g𝐺)𝑥) = 𝑥))
1716ovanraleqv 6018 . . . . . . . . . . . 12 (𝑦 = 𝑒 → (∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥) ↔ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
1814, 17anbi12d 473 . . . . . . . . . . 11 (𝑦 = 𝑒 → ((𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)) ↔ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
1918iotam 5306 . . . . . . . . . 10 ((𝑒𝐵 ∧ ∃𝑤 𝑤𝑒𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))) → (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
20 rsp 2577 . . . . . . . . . 10 (∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2119, 20simpl2im 386 . . . . . . . . 9 ((𝑒𝐵 ∧ ∃𝑤 𝑤𝑒𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2212, 13, 21sylc 62 . . . . . . . 8 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))
2322ralrimiva 2603 . . . . . . 7 ((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))
2423exp31 364 . . . . . 6 ((𝐺 ∈ Smgrp ∧ 𝑒𝐵) → (𝑤𝑒 → (𝑒 = 0 → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
2524exlimdv 1865 . . . . 5 ((𝐺 ∈ Smgrp ∧ 𝑒𝐵) → (∃𝑤 𝑤𝑒 → (𝑒 = 0 → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
2625impd 254 . . . 4 ((𝐺 ∈ Smgrp ∧ 𝑒𝐵) → ((∃𝑤 𝑤𝑒𝑒 = 0 ) → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2726reximdva 2632 . . 3 (𝐺 ∈ Smgrp → (∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 ) → ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2827imdistani 445 . 2 ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
295, 6ismnddef 13437 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
3028, 29sylibr 134 1 ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → 𝐺 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  cio 5272  cfv 5314  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  0gc0g 13275  Smgrpcsgrp 13420  Mndcmnd 13435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-riota 5947  df-ov 5997  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-mnd 13436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator