ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrpidmndm GIF version

Theorem sgrpidmndm 13061
Description: A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
Hypotheses
Ref Expression
sgrpidmnd.b 𝐵 = (Base‘𝐺)
sgrpidmnd.0 0 = (0g𝐺)
Assertion
Ref Expression
sgrpidmndm ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → 𝐺 ∈ Mnd)
Distinct variable groups:   𝐵,𝑒,𝑤   𝑒,𝐺,𝑤   𝑤, 0   𝑤,𝑒
Allowed substitution hint:   0 (𝑒)

Proof of Theorem sgrpidmndm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 542 . . . . . . . . . 10 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑒𝐵)
2 simpllr 534 . . . . . . . . . . 11 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑤𝑒)
3219.8ad 1605 . . . . . . . . . 10 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → ∃𝑤 𝑤𝑒)
4 simplr 528 . . . . . . . . . . 11 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑒 = 0 )
5 sgrpidmnd.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
6 eqid 2196 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
7 sgrpidmnd.0 . . . . . . . . . . . . . 14 0 = (0g𝐺)
85, 6, 7grpidvalg 13016 . . . . . . . . . . . . 13 (𝐺 ∈ Smgrp → 0 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥))))
98eqeq2d 2208 . . . . . . . . . . . 12 (𝐺 ∈ Smgrp → (𝑒 = 0𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))))
109ad4antr 494 . . . . . . . . . . 11 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → (𝑒 = 0𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))))
114, 10mpbid 147 . . . . . . . . . 10 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥))))
121, 3, 113jca 1179 . . . . . . . . 9 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → (𝑒𝐵 ∧ ∃𝑤 𝑤𝑒𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))))
13 simpr 110 . . . . . . . . 9 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑥𝐵)
14 eleq1w 2257 . . . . . . . . . . . 12 (𝑦 = 𝑒 → (𝑦𝐵𝑒𝐵))
15 oveq1 5929 . . . . . . . . . . . . . 14 (𝑦 = 𝑒 → (𝑦(+g𝐺)𝑥) = (𝑒(+g𝐺)𝑥))
1615eqeq1d 2205 . . . . . . . . . . . . 13 (𝑦 = 𝑒 → ((𝑦(+g𝐺)𝑥) = 𝑥 ↔ (𝑒(+g𝐺)𝑥) = 𝑥))
1716ovanraleqv 5946 . . . . . . . . . . . 12 (𝑦 = 𝑒 → (∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥) ↔ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
1814, 17anbi12d 473 . . . . . . . . . . 11 (𝑦 = 𝑒 → ((𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)) ↔ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
1918iotam 5250 . . . . . . . . . 10 ((𝑒𝐵 ∧ ∃𝑤 𝑤𝑒𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))) → (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
20 rsp 2544 . . . . . . . . . 10 (∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2119, 20simpl2im 386 . . . . . . . . 9 ((𝑒𝐵 ∧ ∃𝑤 𝑤𝑒𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2212, 13, 21sylc 62 . . . . . . . 8 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))
2322ralrimiva 2570 . . . . . . 7 ((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))
2423exp31 364 . . . . . 6 ((𝐺 ∈ Smgrp ∧ 𝑒𝐵) → (𝑤𝑒 → (𝑒 = 0 → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
2524exlimdv 1833 . . . . 5 ((𝐺 ∈ Smgrp ∧ 𝑒𝐵) → (∃𝑤 𝑤𝑒 → (𝑒 = 0 → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
2625impd 254 . . . 4 ((𝐺 ∈ Smgrp ∧ 𝑒𝐵) → ((∃𝑤 𝑤𝑒𝑒 = 0 ) → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2726reximdva 2599 . . 3 (𝐺 ∈ Smgrp → (∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 ) → ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2827imdistani 445 . 2 ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
295, 6ismnddef 13059 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
3028, 29sylibr 134 1 ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → 𝐺 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  cio 5217  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  0gc0g 12927  Smgrpcsgrp 13044  Mndcmnd 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mnd 13058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator