ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrpidmndm GIF version

Theorem sgrpidmndm 12656
Description: A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
Hypotheses
Ref Expression
sgrpidmnd.b 𝐵 = (Base‘𝐺)
sgrpidmnd.0 0 = (0g𝐺)
Assertion
Ref Expression
sgrpidmndm ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → 𝐺 ∈ Mnd)
Distinct variable groups:   𝐵,𝑒,𝑤   𝑒,𝐺,𝑤   𝑤, 0   𝑤,𝑒
Allowed substitution hint:   0 (𝑒)

Proof of Theorem sgrpidmndm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 537 . . . . . . . . . 10 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑒𝐵)
2 simpllr 529 . . . . . . . . . . 11 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑤𝑒)
3219.8ad 1584 . . . . . . . . . 10 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → ∃𝑤 𝑤𝑒)
4 simplr 525 . . . . . . . . . . 11 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑒 = 0 )
5 sgrpidmnd.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
6 eqid 2170 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
7 sgrpidmnd.0 . . . . . . . . . . . . . 14 0 = (0g𝐺)
85, 6, 7grpidvalg 12627 . . . . . . . . . . . . 13 (𝐺 ∈ Smgrp → 0 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥))))
98eqeq2d 2182 . . . . . . . . . . . 12 (𝐺 ∈ Smgrp → (𝑒 = 0𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))))
109ad4antr 491 . . . . . . . . . . 11 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → (𝑒 = 0𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))))
114, 10mpbid 146 . . . . . . . . . 10 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥))))
121, 3, 113jca 1172 . . . . . . . . 9 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → (𝑒𝐵 ∧ ∃𝑤 𝑤𝑒𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))))
13 simpr 109 . . . . . . . . 9 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → 𝑥𝐵)
14 eleq1w 2231 . . . . . . . . . . . 12 (𝑦 = 𝑒 → (𝑦𝐵𝑒𝐵))
15 oveq1 5860 . . . . . . . . . . . . . 14 (𝑦 = 𝑒 → (𝑦(+g𝐺)𝑥) = (𝑒(+g𝐺)𝑥))
1615eqeq1d 2179 . . . . . . . . . . . . 13 (𝑦 = 𝑒 → ((𝑦(+g𝐺)𝑥) = 𝑥 ↔ (𝑒(+g𝐺)𝑥) = 𝑥))
1716ovanraleqv 5877 . . . . . . . . . . . 12 (𝑦 = 𝑒 → (∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥) ↔ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
1814, 17anbi12d 470 . . . . . . . . . . 11 (𝑦 = 𝑒 → ((𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)) ↔ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
1918iotam 5190 . . . . . . . . . 10 ((𝑒𝐵 ∧ ∃𝑤 𝑤𝑒𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))) → (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
20 rsp 2517 . . . . . . . . . 10 (∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2119, 20simpl2im 384 . . . . . . . . 9 ((𝑒𝐵 ∧ ∃𝑤 𝑤𝑒𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2212, 13, 21sylc 62 . . . . . . . 8 (((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) ∧ 𝑥𝐵) → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))
2322ralrimiva 2543 . . . . . . 7 ((((𝐺 ∈ Smgrp ∧ 𝑒𝐵) ∧ 𝑤𝑒) ∧ 𝑒 = 0 ) → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))
2423exp31 362 . . . . . 6 ((𝐺 ∈ Smgrp ∧ 𝑒𝐵) → (𝑤𝑒 → (𝑒 = 0 → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
2524exlimdv 1812 . . . . 5 ((𝐺 ∈ Smgrp ∧ 𝑒𝐵) → (∃𝑤 𝑤𝑒 → (𝑒 = 0 → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
2625impd 252 . . . 4 ((𝐺 ∈ Smgrp ∧ 𝑒𝐵) → ((∃𝑤 𝑤𝑒𝑒 = 0 ) → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2726reximdva 2572 . . 3 (𝐺 ∈ Smgrp → (∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 ) → ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2827imdistani 443 . 2 ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
295, 6ismnddef 12654 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
3028, 29sylibr 133 1 ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → 𝐺 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  cio 5158  cfv 5198  (class class class)co 5853  Basecbs 12416  +gcplusg 12480  0gc0g 12596  Smgrpcsgrp 12642  Mndcmnd 12652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-0g 12598  df-mnd 12653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator