| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvbssntrcntop | GIF version | ||
| Description: The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
| Ref | Expression |
|---|---|
| dvcl.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| dvcl.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| dvcl.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| dvbssntr.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
| dvbssntr.k | ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) |
| Ref | Expression |
|---|---|
| dvbssntrcntop | ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcl.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 2 | dvcl.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 3 | dvcl.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 4 | dvbssntr.j | . . . . 5 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
| 5 | dvbssntr.k | . . . . 5 ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) | |
| 6 | 4, 5 | dvfvalap 15340 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝐽)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ))) |
| 7 | 1, 2, 3, 6 | syl3anc 1271 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝐽)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ))) |
| 8 | dmss 4919 | . . 3 ⊢ ((𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ) → dom (𝑆 D 𝐹) ⊆ dom (((int‘𝐽)‘𝐴) × ℂ)) | |
| 9 | 7, 8 | simpl2im 386 | . 2 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ dom (((int‘𝐽)‘𝐴) × ℂ)) |
| 10 | dmxpss 5155 | . 2 ⊢ dom (((int‘𝐽)‘𝐴) × ℂ) ⊆ ((int‘𝐽)‘𝐴) | |
| 11 | 9, 10 | sstrdi 3236 | 1 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 {crab 2512 ⊆ wss 3197 {csn 3666 ∪ ciun 3964 class class class wbr 4082 ↦ cmpt 4144 × cxp 4714 dom cdm 4716 ∘ ccom 4720 ⟶wf 5310 ‘cfv 5314 (class class class)co 5994 ℂcc 7985 − cmin 8305 # cap 8716 / cdiv 8807 abscabs 11494 ↾t crest 13258 MetOpencmopn 14490 intcnt 14752 limℂ climc 15313 D cdv 15314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-map 6787 df-pm 6788 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-xneg 9956 df-xadd 9957 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-rest 13260 df-topgen 13279 df-psmet 14492 df-xmet 14493 df-met 14494 df-bl 14495 df-mopn 14496 df-top 14657 df-topon 14670 df-bases 14702 df-ntr 14755 df-limced 15315 df-dvap 15316 |
| This theorem is referenced by: dvbss 15344 dvcjbr 15367 |
| Copyright terms: Public domain | W3C validator |