Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcnpi GIF version

Theorem metcnpi 12716
 Description: Epsilon-delta property of a continuous metric space function, with function arguments as in metcnp 12713. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcnpi (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐴,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑃,𝑦

Proof of Theorem metcnpi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
2 simpll 519 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐶 ∈ (∞Met‘𝑋))
3 simplr 520 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐷 ∈ (∞Met‘𝑌))
4 metcn.2 . . . . . . . . . 10 𝐽 = (MetOpen‘𝐶)
54mopntopon 12644 . . . . . . . . 9 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
65ad2antrr 480 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ (TopOn‘𝑋))
74mopnuni 12646 . . . . . . . . . 10 (𝐶 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
87ad2antrr 480 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑋 = 𝐽)
98fveq2d 5431 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (TopOn‘𝑋) = (TopOn‘ 𝐽))
106, 9eleqtrd 2219 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ (TopOn‘ 𝐽))
11 metcn.4 . . . . . . . . 9 𝐾 = (MetOpen‘𝐷)
1211mopntopon 12644 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
13 topontop 12213 . . . . . . . 8 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
143, 12, 133syl 17 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ Top)
15 cnprcl2k 12407 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 𝐽)
1610, 14, 1, 15syl3anc 1217 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 𝐽)
1716, 8eleqtrrd 2220 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)
184, 11metcnp 12713 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧))))
192, 3, 17, 18syl3anc 1217 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧))))
201, 19mpbid 146 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧)))
21 breq2 3939 . . . . . 6 (𝑧 = 𝐴 → (((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧 ↔ ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴))
2221imbi2d 229 . . . . 5 (𝑧 = 𝐴 → (((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧) ↔ ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴)))
2322rexralbidv 2464 . . . 4 (𝑧 = 𝐴 → (∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧) ↔ ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴)))
2423rspccv 2789 . . 3 (∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧) → (𝐴 ∈ ℝ+ → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴)))
2520, 24simpl2im 384 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐴 ∈ ℝ+ → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴)))
2625impr 377 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481  ∀wral 2417  ∃wrex 2418  ∪ cuni 3742   class class class wbr 3935  ⟶wf 5125  ‘cfv 5129  (class class class)co 5780   < clt 7822  ℝ+crp 9468  ∞Metcxmet 12181  MetOpencmopn 12186  Topctop 12196  TopOnctopon 12209   CnP ccnp 12387 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4049  ax-sep 4052  ax-nul 4060  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458  ax-iinf 4508  ax-cnex 7733  ax-resscn 7734  ax-1cn 7735  ax-1re 7736  ax-icn 7737  ax-addcl 7738  ax-addrcl 7739  ax-mulcl 7740  ax-mulrcl 7741  ax-addcom 7742  ax-mulcom 7743  ax-addass 7744  ax-mulass 7745  ax-distr 7746  ax-i2m1 7747  ax-0lt1 7748  ax-1rid 7749  ax-0id 7750  ax-rnegex 7751  ax-precex 7752  ax-cnre 7753  ax-pre-ltirr 7754  ax-pre-ltwlin 7755  ax-pre-lttrn 7756  ax-pre-apti 7757  ax-pre-ltadd 7758  ax-pre-mulgt0 7759  ax-pre-mulext 7760  ax-arch 7761  ax-caucvg 7762 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-nul 3367  df-if 3478  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-int 3778  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-tr 4033  df-id 4221  df-po 4224  df-iso 4225  df-iord 4294  df-on 4296  df-ilim 4297  df-suc 4299  df-iom 4511  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-fv 5137  df-isom 5138  df-riota 5736  df-ov 5783  df-oprab 5784  df-mpo 5785  df-1st 6044  df-2nd 6045  df-recs 6208  df-frec 6294  df-map 6550  df-sup 6877  df-inf 6878  df-pnf 7824  df-mnf 7825  df-xr 7826  df-ltxr 7827  df-le 7828  df-sub 7957  df-neg 7958  df-reap 8359  df-ap 8366  df-div 8455  df-inn 8743  df-2 8801  df-3 8802  df-4 8803  df-n0 9000  df-z 9077  df-uz 9349  df-q 9437  df-rp 9469  df-xneg 9587  df-xadd 9588  df-seqfrec 10248  df-exp 10322  df-cj 10644  df-re 10645  df-im 10646  df-rsqrt 10800  df-abs 10801  df-topgen 12173  df-psmet 12188  df-xmet 12189  df-bl 12191  df-mopn 12192  df-top 12197  df-topon 12210  df-bases 12242  df-cnp 12390 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator