ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcnpi GIF version

Theorem metcnpi 13268
Description: Epsilon-delta property of a continuous metric space function, with function arguments as in metcnp 13265. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcnpi (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐴,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑃,𝑦

Proof of Theorem metcnpi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
2 simpll 524 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐶 ∈ (∞Met‘𝑋))
3 simplr 525 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐷 ∈ (∞Met‘𝑌))
4 metcn.2 . . . . . . . . . 10 𝐽 = (MetOpen‘𝐶)
54mopntopon 13196 . . . . . . . . 9 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
65ad2antrr 485 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ (TopOn‘𝑋))
74mopnuni 13198 . . . . . . . . . 10 (𝐶 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
87ad2antrr 485 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑋 = 𝐽)
98fveq2d 5498 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (TopOn‘𝑋) = (TopOn‘ 𝐽))
106, 9eleqtrd 2249 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ (TopOn‘ 𝐽))
11 metcn.4 . . . . . . . . 9 𝐾 = (MetOpen‘𝐷)
1211mopntopon 13196 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
13 topontop 12765 . . . . . . . 8 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
143, 12, 133syl 17 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ Top)
15 cnprcl2k 12959 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 𝐽)
1610, 14, 1, 15syl3anc 1233 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 𝐽)
1716, 8eleqtrrd 2250 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)
184, 11metcnp 13265 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧))))
192, 3, 17, 18syl3anc 1233 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧))))
201, 19mpbid 146 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧)))
21 breq2 3991 . . . . . 6 (𝑧 = 𝐴 → (((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧 ↔ ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴))
2221imbi2d 229 . . . . 5 (𝑧 = 𝐴 → (((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧) ↔ ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴)))
2322rexralbidv 2496 . . . 4 (𝑧 = 𝐴 → (∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧) ↔ ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴)))
2423rspccv 2831 . . 3 (∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝑧) → (𝐴 ∈ ℝ+ → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴)))
2520, 24simpl2im 384 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐴 ∈ ℝ+ → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴)))
2625impr 377 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  wrex 2449   cuni 3794   class class class wbr 3987  wf 5192  cfv 5196  (class class class)co 5850   < clt 7941  +crp 9597  ∞Metcxmet 12733  MetOpencmopn 12738  Topctop 12748  TopOnctopon 12761   CnP ccnp 12939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-map 6624  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-xneg 9716  df-xadd 9717  df-seqfrec 10389  df-exp 10463  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-topgen 12587  df-psmet 12740  df-xmet 12741  df-bl 12743  df-mopn 12744  df-top 12749  df-topon 12762  df-bases 12794  df-cnp 12942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator