ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo3h GIF version

Theorem mo3h 2028
Description: Alternate definition of "at most one." Definition of [BellMachover] p. 460, except that definition has the side condition that 𝑦 not occur in 𝜑 in place of our hypothesis. (Contributed by NM, 8-Mar-1995.) (New usage is discouraged.)
Hypothesis
Ref Expression
mo3h.1 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
mo3h (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem mo3h
StepHypRef Expression
1 mo3h.1 . . . . . . 7 (𝜑 → ∀𝑦𝜑)
21nfi 1421 . . . . . 6 𝑦𝜑
32eu2 2019 . . . . 5 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
43imbi2i 225 . . . 4 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑥𝜑 → (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
5 df-mo 1979 . . . 4 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
6 anclb 315 . . . 4 ((∃𝑥𝜑 → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (∃𝑥𝜑 → (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
74, 5, 63bitr4i 211 . . 3 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
8 19.38 1637 . . . . 5 ((∃𝑥𝜑 → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∀𝑥(𝜑 → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
9219.21 1545 . . . . . 6 (∀𝑦(𝜑 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝜑 → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
109albii 1429 . . . . 5 (∀𝑥𝑦(𝜑 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ ∀𝑥(𝜑 → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
118, 10sylibr 133 . . . 4 ((∃𝑥𝜑 → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∀𝑥𝑦(𝜑 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
12 anabs5 545 . . . . . 6 ((𝜑 ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) ↔ (𝜑 ∧ [𝑦 / 𝑥]𝜑))
13 pm3.31 260 . . . . . 6 ((𝜑 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ((𝜑 ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) → 𝑥 = 𝑦))
1412, 13syl5bir 152 . . . . 5 ((𝜑 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
15142alimi 1415 . . . 4 (∀𝑥𝑦(𝜑 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
1611, 15syl 14 . . 3 ((∃𝑥𝜑 → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
177, 16sylbi 120 . 2 (∃*𝑥𝜑 → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
183simplbi2com 1403 . . 3 (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃!𝑥𝜑))
1918, 5sylibr 133 . 2 (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝜑)
2017, 19impbii 125 1 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1312  wex 1451  [wsb 1718  ∃!weu 1975  ∃*wmo 1976
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498
This theorem depends on definitions:  df-bi 116  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979
This theorem is referenced by:  mo3  2029  mo2dc  2030  mo4f  2035  moim  2039  moimv  2041  moanim  2049  mopick  2053
  Copyright terms: Public domain W3C validator