Proof of Theorem peano5nnnn
Step | Hyp | Ref
| Expression |
1 | | oveq1 5849 |
. . . 4
⊢ (𝑦 = 𝑧 → (𝑦 + 1) = (𝑧 + 1)) |
2 | 1 | eleq1d 2235 |
. . 3
⊢ (𝑦 = 𝑧 → ((𝑦 + 1) ∈ 𝐴 ↔ (𝑧 + 1) ∈ 𝐴)) |
3 | 2 | cbvralv 2692 |
. 2
⊢
(∀𝑦 ∈
𝐴 (𝑦 + 1) ∈ 𝐴 ↔ ∀𝑧 ∈ 𝐴 (𝑧 + 1) ∈ 𝐴) |
4 | | ax1re 7803 |
. . . . 5
⊢ 1 ∈
ℝ |
5 | | elin 3305 |
. . . . . 6
⊢ (1 ∈
(𝐴 ∩ ℝ) ↔ (1
∈ 𝐴 ∧ 1 ∈
ℝ)) |
6 | 5 | biimpri 132 |
. . . . 5
⊢ ((1
∈ 𝐴 ∧ 1 ∈
ℝ) → 1 ∈ (𝐴
∩ ℝ)) |
7 | 4, 6 | mpan2 422 |
. . . 4
⊢ (1 ∈
𝐴 → 1 ∈ (𝐴 ∩
ℝ)) |
8 | | inss1 3342 |
. . . . . 6
⊢ (𝐴 ∩ ℝ) ⊆ 𝐴 |
9 | | ssralv 3206 |
. . . . . 6
⊢ ((𝐴 ∩ ℝ) ⊆ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ 𝐴)) |
10 | 8, 9 | ax-mp 5 |
. . . . 5
⊢
(∀𝑦 ∈
𝐴 (𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ 𝐴) |
11 | | inss2 3343 |
. . . . . . . 8
⊢ (𝐴 ∩ ℝ) ⊆
ℝ |
12 | 11 | sseli 3138 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐴 ∩ ℝ) → 𝑦 ∈ ℝ) |
13 | | axaddrcl 7806 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 1 ∈
ℝ) → (𝑦 + 1)
∈ ℝ) |
14 | 4, 13 | mpan2 422 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈
ℝ) |
15 | | elin 3305 |
. . . . . . . 8
⊢ ((𝑦 + 1) ∈ (𝐴 ∩ ℝ) ↔ ((𝑦 + 1) ∈ 𝐴 ∧ (𝑦 + 1) ∈ ℝ)) |
16 | 15 | simplbi2com 1432 |
. . . . . . 7
⊢ ((𝑦 + 1) ∈ ℝ →
((𝑦 + 1) ∈ 𝐴 → (𝑦 + 1) ∈ (𝐴 ∩ ℝ))) |
17 | 12, 14, 16 | 3syl 17 |
. . . . . 6
⊢ (𝑦 ∈ (𝐴 ∩ ℝ) → ((𝑦 + 1) ∈ 𝐴 → (𝑦 + 1) ∈ (𝐴 ∩ ℝ))) |
18 | 17 | ralimia 2527 |
. . . . 5
⊢
(∀𝑦 ∈
(𝐴 ∩ ℝ)(𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)) |
19 | 10, 18 | syl 14 |
. . . 4
⊢
(∀𝑦 ∈
𝐴 (𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)) |
20 | | axcnex 7800 |
. . . . . . 7
⊢ ℂ
∈ V |
21 | | axresscn 7801 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
22 | 20, 21 | ssexi 4120 |
. . . . . 6
⊢ ℝ
∈ V |
23 | 22 | inex2 4117 |
. . . . 5
⊢ (𝐴 ∩ ℝ) ∈
V |
24 | | eleq2 2230 |
. . . . . . . 8
⊢ (𝑥 = (𝐴 ∩ ℝ) → (1 ∈ 𝑥 ↔ 1 ∈ (𝐴 ∩
ℝ))) |
25 | | eleq2 2230 |
. . . . . . . . 9
⊢ (𝑥 = (𝐴 ∩ ℝ) → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ (𝐴 ∩ ℝ))) |
26 | 25 | raleqbi1dv 2669 |
. . . . . . . 8
⊢ (𝑥 = (𝐴 ∩ ℝ) → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ))) |
27 | 24, 26 | anbi12d 465 |
. . . . . . 7
⊢ (𝑥 = (𝐴 ∩ ℝ) → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)))) |
28 | 27 | elabg 2872 |
. . . . . 6
⊢ ((𝐴 ∩ ℝ) ∈ V →
((𝐴 ∩ ℝ) ∈
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)))) |
29 | | nntopi.n |
. . . . . . 7
⊢ 𝑁 = ∩
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
30 | | intss1 3839 |
. . . . . . 7
⊢ ((𝐴 ∩ ℝ) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ (𝐴 ∩ ℝ)) |
31 | 29, 30 | eqsstrid 3188 |
. . . . . 6
⊢ ((𝐴 ∩ ℝ) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → 𝑁 ⊆ (𝐴 ∩ ℝ)) |
32 | 28, 31 | syl6bir 163 |
. . . . 5
⊢ ((𝐴 ∩ ℝ) ∈ V →
((1 ∈ (𝐴 ∩
ℝ) ∧ ∀𝑦
∈ (𝐴 ∩
ℝ)(𝑦 + 1) ∈
(𝐴 ∩ ℝ)) →
𝑁 ⊆ (𝐴 ∩
ℝ))) |
33 | 23, 32 | ax-mp 5 |
. . . 4
⊢ ((1
∈ (𝐴 ∩ ℝ)
∧ ∀𝑦 ∈
(𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)) → 𝑁 ⊆ (𝐴 ∩ ℝ)) |
34 | 7, 19, 33 | syl2an 287 |
. . 3
⊢ ((1
∈ 𝐴 ∧
∀𝑦 ∈ 𝐴 (𝑦 + 1) ∈ 𝐴) → 𝑁 ⊆ (𝐴 ∩ ℝ)) |
35 | 34, 8 | sstrdi 3154 |
. 2
⊢ ((1
∈ 𝐴 ∧
∀𝑦 ∈ 𝐴 (𝑦 + 1) ∈ 𝐴) → 𝑁 ⊆ 𝐴) |
36 | 3, 35 | sylan2br 286 |
1
⊢ ((1
∈ 𝐴 ∧
∀𝑧 ∈ 𝐴 (𝑧 + 1) ∈ 𝐴) → 𝑁 ⊆ 𝐴) |