Proof of Theorem peano5nnnn
| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 5932 |
. . . 4
⊢ (𝑦 = 𝑧 → (𝑦 + 1) = (𝑧 + 1)) |
| 2 | 1 | eleq1d 2265 |
. . 3
⊢ (𝑦 = 𝑧 → ((𝑦 + 1) ∈ 𝐴 ↔ (𝑧 + 1) ∈ 𝐴)) |
| 3 | 2 | cbvralv 2729 |
. 2
⊢
(∀𝑦 ∈
𝐴 (𝑦 + 1) ∈ 𝐴 ↔ ∀𝑧 ∈ 𝐴 (𝑧 + 1) ∈ 𝐴) |
| 4 | | ax1re 7946 |
. . . . 5
⊢ 1 ∈
ℝ |
| 5 | | elin 3347 |
. . . . . 6
⊢ (1 ∈
(𝐴 ∩ ℝ) ↔ (1
∈ 𝐴 ∧ 1 ∈
ℝ)) |
| 6 | 5 | biimpri 133 |
. . . . 5
⊢ ((1
∈ 𝐴 ∧ 1 ∈
ℝ) → 1 ∈ (𝐴
∩ ℝ)) |
| 7 | 4, 6 | mpan2 425 |
. . . 4
⊢ (1 ∈
𝐴 → 1 ∈ (𝐴 ∩
ℝ)) |
| 8 | | inss1 3384 |
. . . . . 6
⊢ (𝐴 ∩ ℝ) ⊆ 𝐴 |
| 9 | | ssralv 3248 |
. . . . . 6
⊢ ((𝐴 ∩ ℝ) ⊆ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ 𝐴)) |
| 10 | 8, 9 | ax-mp 5 |
. . . . 5
⊢
(∀𝑦 ∈
𝐴 (𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ 𝐴) |
| 11 | | inss2 3385 |
. . . . . . . 8
⊢ (𝐴 ∩ ℝ) ⊆
ℝ |
| 12 | 11 | sseli 3180 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐴 ∩ ℝ) → 𝑦 ∈ ℝ) |
| 13 | | axaddrcl 7949 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 1 ∈
ℝ) → (𝑦 + 1)
∈ ℝ) |
| 14 | 4, 13 | mpan2 425 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈
ℝ) |
| 15 | | elin 3347 |
. . . . . . . 8
⊢ ((𝑦 + 1) ∈ (𝐴 ∩ ℝ) ↔ ((𝑦 + 1) ∈ 𝐴 ∧ (𝑦 + 1) ∈ ℝ)) |
| 16 | 15 | simplbi2com 1455 |
. . . . . . 7
⊢ ((𝑦 + 1) ∈ ℝ →
((𝑦 + 1) ∈ 𝐴 → (𝑦 + 1) ∈ (𝐴 ∩ ℝ))) |
| 17 | 12, 14, 16 | 3syl 17 |
. . . . . 6
⊢ (𝑦 ∈ (𝐴 ∩ ℝ) → ((𝑦 + 1) ∈ 𝐴 → (𝑦 + 1) ∈ (𝐴 ∩ ℝ))) |
| 18 | 17 | ralimia 2558 |
. . . . 5
⊢
(∀𝑦 ∈
(𝐴 ∩ ℝ)(𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)) |
| 19 | 10, 18 | syl 14 |
. . . 4
⊢
(∀𝑦 ∈
𝐴 (𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)) |
| 20 | | axcnex 7943 |
. . . . . . 7
⊢ ℂ
∈ V |
| 21 | | axresscn 7944 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
| 22 | 20, 21 | ssexi 4172 |
. . . . . 6
⊢ ℝ
∈ V |
| 23 | 22 | inex2 4169 |
. . . . 5
⊢ (𝐴 ∩ ℝ) ∈
V |
| 24 | | eleq2 2260 |
. . . . . . . 8
⊢ (𝑥 = (𝐴 ∩ ℝ) → (1 ∈ 𝑥 ↔ 1 ∈ (𝐴 ∩
ℝ))) |
| 25 | | eleq2 2260 |
. . . . . . . . 9
⊢ (𝑥 = (𝐴 ∩ ℝ) → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ (𝐴 ∩ ℝ))) |
| 26 | 25 | raleqbi1dv 2705 |
. . . . . . . 8
⊢ (𝑥 = (𝐴 ∩ ℝ) → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ))) |
| 27 | 24, 26 | anbi12d 473 |
. . . . . . 7
⊢ (𝑥 = (𝐴 ∩ ℝ) → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)))) |
| 28 | 27 | elabg 2910 |
. . . . . 6
⊢ ((𝐴 ∩ ℝ) ∈ V →
((𝐴 ∩ ℝ) ∈
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)))) |
| 29 | | nntopi.n |
. . . . . . 7
⊢ 𝑁 = ∩
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| 30 | | intss1 3890 |
. . . . . . 7
⊢ ((𝐴 ∩ ℝ) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ (𝐴 ∩ ℝ)) |
| 31 | 29, 30 | eqsstrid 3230 |
. . . . . 6
⊢ ((𝐴 ∩ ℝ) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → 𝑁 ⊆ (𝐴 ∩ ℝ)) |
| 32 | 28, 31 | biimtrrdi 164 |
. . . . 5
⊢ ((𝐴 ∩ ℝ) ∈ V →
((1 ∈ (𝐴 ∩
ℝ) ∧ ∀𝑦
∈ (𝐴 ∩
ℝ)(𝑦 + 1) ∈
(𝐴 ∩ ℝ)) →
𝑁 ⊆ (𝐴 ∩
ℝ))) |
| 33 | 23, 32 | ax-mp 5 |
. . . 4
⊢ ((1
∈ (𝐴 ∩ ℝ)
∧ ∀𝑦 ∈
(𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)) → 𝑁 ⊆ (𝐴 ∩ ℝ)) |
| 34 | 7, 19, 33 | syl2an 289 |
. . 3
⊢ ((1
∈ 𝐴 ∧
∀𝑦 ∈ 𝐴 (𝑦 + 1) ∈ 𝐴) → 𝑁 ⊆ (𝐴 ∩ ℝ)) |
| 35 | 34, 8 | sstrdi 3196 |
. 2
⊢ ((1
∈ 𝐴 ∧
∀𝑦 ∈ 𝐴 (𝑦 + 1) ∈ 𝐴) → 𝑁 ⊆ 𝐴) |
| 36 | 3, 35 | sylan2br 288 |
1
⊢ ((1
∈ 𝐴 ∧
∀𝑧 ∈ 𝐴 (𝑧 + 1) ∈ 𝐴) → 𝑁 ⊆ 𝐴) |