ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5nnnn GIF version

Theorem peano5nnnn 7976
Description: Peano's inductive postulate. This is a counterpart to peano5nni 9010 designed for real number axioms which involve natural numbers (notably, axcaucvg 7984). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
nntopi.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Assertion
Ref Expression
peano5nnnn ((1 ∈ 𝐴 ∧ ∀𝑧𝐴 (𝑧 + 1) ∈ 𝐴) → 𝑁𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑧,𝐴,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦,𝑧)

Proof of Theorem peano5nnnn
StepHypRef Expression
1 oveq1 5932 . . . 4 (𝑦 = 𝑧 → (𝑦 + 1) = (𝑧 + 1))
21eleq1d 2265 . . 3 (𝑦 = 𝑧 → ((𝑦 + 1) ∈ 𝐴 ↔ (𝑧 + 1) ∈ 𝐴))
32cbvralv 2729 . 2 (∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴 ↔ ∀𝑧𝐴 (𝑧 + 1) ∈ 𝐴)
4 ax1re 7946 . . . . 5 1 ∈ ℝ
5 elin 3347 . . . . . 6 (1 ∈ (𝐴 ∩ ℝ) ↔ (1 ∈ 𝐴 ∧ 1 ∈ ℝ))
65biimpri 133 . . . . 5 ((1 ∈ 𝐴 ∧ 1 ∈ ℝ) → 1 ∈ (𝐴 ∩ ℝ))
74, 6mpan2 425 . . . 4 (1 ∈ 𝐴 → 1 ∈ (𝐴 ∩ ℝ))
8 inss1 3384 . . . . . 6 (𝐴 ∩ ℝ) ⊆ 𝐴
9 ssralv 3248 . . . . . 6 ((𝐴 ∩ ℝ) ⊆ 𝐴 → (∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ 𝐴))
108, 9ax-mp 5 . . . . 5 (∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ 𝐴)
11 inss2 3385 . . . . . . . 8 (𝐴 ∩ ℝ) ⊆ ℝ
1211sseli 3180 . . . . . . 7 (𝑦 ∈ (𝐴 ∩ ℝ) → 𝑦 ∈ ℝ)
13 axaddrcl 7949 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
144, 13mpan2 425 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
15 elin 3347 . . . . . . . 8 ((𝑦 + 1) ∈ (𝐴 ∩ ℝ) ↔ ((𝑦 + 1) ∈ 𝐴 ∧ (𝑦 + 1) ∈ ℝ))
1615simplbi2com 1455 . . . . . . 7 ((𝑦 + 1) ∈ ℝ → ((𝑦 + 1) ∈ 𝐴 → (𝑦 + 1) ∈ (𝐴 ∩ ℝ)))
1712, 14, 163syl 17 . . . . . 6 (𝑦 ∈ (𝐴 ∩ ℝ) → ((𝑦 + 1) ∈ 𝐴 → (𝑦 + 1) ∈ (𝐴 ∩ ℝ)))
1817ralimia 2558 . . . . 5 (∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ))
1910, 18syl 14 . . . 4 (∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ))
20 axcnex 7943 . . . . . . 7 ℂ ∈ V
21 axresscn 7944 . . . . . . 7 ℝ ⊆ ℂ
2220, 21ssexi 4172 . . . . . 6 ℝ ∈ V
2322inex2 4169 . . . . 5 (𝐴 ∩ ℝ) ∈ V
24 eleq2 2260 . . . . . . . 8 (𝑥 = (𝐴 ∩ ℝ) → (1 ∈ 𝑥 ↔ 1 ∈ (𝐴 ∩ ℝ)))
25 eleq2 2260 . . . . . . . . 9 (𝑥 = (𝐴 ∩ ℝ) → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ (𝐴 ∩ ℝ)))
2625raleqbi1dv 2705 . . . . . . . 8 (𝑥 = (𝐴 ∩ ℝ) → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)))
2724, 26anbi12d 473 . . . . . . 7 (𝑥 = (𝐴 ∩ ℝ) → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ))))
2827elabg 2910 . . . . . 6 ((𝐴 ∩ ℝ) ∈ V → ((𝐴 ∩ ℝ) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ))))
29 nntopi.n . . . . . . 7 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
30 intss1 3890 . . . . . . 7 ((𝐴 ∩ ℝ) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ (𝐴 ∩ ℝ))
3129, 30eqsstrid 3230 . . . . . 6 ((𝐴 ∩ ℝ) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → 𝑁 ⊆ (𝐴 ∩ ℝ))
3228, 31biimtrrdi 164 . . . . 5 ((𝐴 ∩ ℝ) ∈ V → ((1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)) → 𝑁 ⊆ (𝐴 ∩ ℝ)))
3323, 32ax-mp 5 . . . 4 ((1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)) → 𝑁 ⊆ (𝐴 ∩ ℝ))
347, 19, 33syl2an 289 . . 3 ((1 ∈ 𝐴 ∧ ∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴) → 𝑁 ⊆ (𝐴 ∩ ℝ))
3534, 8sstrdi 3196 . 2 ((1 ∈ 𝐴 ∧ ∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴) → 𝑁𝐴)
363, 35sylan2br 288 1 ((1 ∈ 𝐴 ∧ ∀𝑧𝐴 (𝑧 + 1) ∈ 𝐴) → 𝑁𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {cab 2182  wral 2475  Vcvv 2763  cin 3156  wss 3157   cint 3875  (class class class)co 5925  cc 7894  cr 7895  1c1 7897   + caddc 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-enr 7810  df-nr 7811  df-plr 7812  df-0r 7815  df-1r 7816  df-c 7902  df-1 7904  df-r 7906  df-add 7907
This theorem is referenced by:  nnindnn  7977
  Copyright terms: Public domain W3C validator