Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mo2r | GIF version |
Description: A condition which implies "at most one". (Contributed by Jim Kingdon, 2-Jul-2018.) |
Ref | Expression |
---|---|
mo2r.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
mo2r | ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo2r.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfri 1512 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | 2 | eu3h 2064 | . . 3 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
4 | 3 | simplbi2com 1437 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
5 | df-mo 2023 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
6 | 4, 5 | sylibr 133 | 1 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 Ⅎwnf 1453 ∃wex 1485 ∃!weu 2019 ∃*wmo 2020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 |
This theorem is referenced by: mo2icl 2909 rmo2ilem 3044 dffun5r 5210 frecuzrdgtcl 10368 frecuzrdgfunlem 10375 |
Copyright terms: Public domain | W3C validator |