| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mo2r | GIF version | ||
| Description: A condition which implies "at most one". (Contributed by Jim Kingdon, 2-Jul-2018.) |
| Ref | Expression |
|---|---|
| mo2r.1 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| mo2r | ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mo2r.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfri 1545 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) |
| 3 | 2 | eu3h 2103 | . . 3 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 4 | 3 | simplbi2com 1467 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| 5 | df-mo 2061 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 6 | 4, 5 | sylibr 134 | 1 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1373 Ⅎwnf 1486 ∃wex 1518 ∃!weu 2057 ∃*wmo 2058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 |
| This theorem is referenced by: mo2icl 2962 rmo2ilem 3099 dffun5r 5306 frecuzrdgtcl 10601 frecuzrdgfunlem 10608 |
| Copyright terms: Public domain | W3C validator |