![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mo2r | GIF version |
Description: A condition which implies "at most one". (Contributed by Jim Kingdon, 2-Jul-2018.) |
Ref | Expression |
---|---|
mo2r.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
mo2r | ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo2r.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfri 1519 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | 2 | eu3h 2071 | . . 3 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
4 | 3 | simplbi2com 1444 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
5 | df-mo 2030 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
6 | 4, 5 | sylibr 134 | 1 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 Ⅎwnf 1460 ∃wex 1492 ∃!weu 2026 ∃*wmo 2027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 |
This theorem is referenced by: mo2icl 2918 rmo2ilem 3054 dffun5r 5230 frecuzrdgtcl 10414 frecuzrdgfunlem 10421 |
Copyright terms: Public domain | W3C validator |