| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mo2r | GIF version | ||
| Description: A condition which implies "at most one". (Contributed by Jim Kingdon, 2-Jul-2018.) |
| Ref | Expression |
|---|---|
| mo2r.1 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| mo2r | ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mo2r.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfri 1565 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) |
| 3 | 2 | eu3h 2123 | . . 3 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 4 | 3 | simplbi2com 1487 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| 5 | df-mo 2081 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 6 | 4, 5 | sylibr 134 | 1 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 Ⅎwnf 1506 ∃wex 1538 ∃!weu 2077 ∃*wmo 2078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 |
| This theorem is referenced by: mo2icl 2982 rmo2ilem 3119 dffun5r 5330 frecuzrdgtcl 10642 frecuzrdgfunlem 10649 |
| Copyright terms: Public domain | W3C validator |