![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mo2r | GIF version |
Description: A condition which implies "at most one." (Contributed by Jim Kingdon, 2-Jul-2018.) |
Ref | Expression |
---|---|
mo2r.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
mo2r | ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo2r.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfri 1464 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | 2 | eu3h 2000 | . . 3 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
4 | 3 | simplbi2com 1385 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
5 | df-mo 1959 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
6 | 4, 5 | sylibr 133 | 1 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1294 Ⅎwnf 1401 ∃wex 1433 ∃!weu 1955 ∃*wmo 1956 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 |
This theorem depends on definitions: df-bi 116 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 |
This theorem is referenced by: mo2icl 2808 rmo2ilem 2942 dffun5r 5061 frecuzrdgtcl 9968 frecuzrdgfunlem 9975 |
Copyright terms: Public domain | W3C validator |