ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo2r GIF version

Theorem mo2r 2110
Description: A condition which implies "at most one". (Contributed by Jim Kingdon, 2-Jul-2018.)
Hypothesis
Ref Expression
mo2r.1 𝑦𝜑
Assertion
Ref Expression
mo2r (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃*𝑥𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem mo2r
StepHypRef Expression
1 mo2r.1 . . . . 5 𝑦𝜑
21nfri 1545 . . . 4 (𝜑 → ∀𝑦𝜑)
32eu3h 2103 . . 3 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
43simplbi2com 1467 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → (∃𝑥𝜑 → ∃!𝑥𝜑))
5 df-mo 2061 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
64, 5sylibr 134 1 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃*𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1373  wnf 1486  wex 1518  ∃!weu 2057  ∃*wmo 2058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061
This theorem is referenced by:  mo2icl  2962  rmo2ilem  3099  dffun5r  5306  frecuzrdgtcl  10601  frecuzrdgfunlem  10608
  Copyright terms: Public domain W3C validator