ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo2r GIF version

Theorem mo2r 2107
Description: A condition which implies "at most one". (Contributed by Jim Kingdon, 2-Jul-2018.)
Hypothesis
Ref Expression
mo2r.1 𝑦𝜑
Assertion
Ref Expression
mo2r (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃*𝑥𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem mo2r
StepHypRef Expression
1 mo2r.1 . . . . 5 𝑦𝜑
21nfri 1543 . . . 4 (𝜑 → ∀𝑦𝜑)
32eu3h 2100 . . 3 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
43simplbi2com 1465 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → (∃𝑥𝜑 → ∃!𝑥𝜑))
5 df-mo 2059 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
64, 5sylibr 134 1 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃*𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wnf 1484  wex 1516  ∃!weu 2055  ∃*wmo 2056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059
This theorem is referenced by:  mo2icl  2953  rmo2ilem  3089  dffun5r  5288  frecuzrdgtcl  10564  frecuzrdgfunlem  10571
  Copyright terms: Public domain W3C validator