| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpidtr | GIF version | ||
| Description: A square cross product (𝐴 × 𝐴) is a transitive relation. (Contributed by FL, 31-Jul-2009.) |
| Ref | Expression |
|---|---|
| xpidtr | ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brxp 4705 | . . . . . 6 ⊢ (𝑥(𝐴 × 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) | |
| 2 | brxp 4705 | . . . . . . . . 9 ⊢ (𝑦(𝐴 × 𝐴)𝑧 ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) | |
| 3 | brxp 4705 | . . . . . . . . . . 11 ⊢ (𝑥(𝐴 × 𝐴)𝑧 ↔ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) | |
| 4 | 3 | simplbi2com 1463 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝑥(𝐴 × 𝐴)𝑧)) |
| 5 | 4 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥 ∈ 𝐴 → 𝑥(𝐴 × 𝐴)𝑧)) |
| 6 | 2, 5 | sylbi 121 | . . . . . . . 8 ⊢ (𝑦(𝐴 × 𝐴)𝑧 → (𝑥 ∈ 𝐴 → 𝑥(𝐴 × 𝐴)𝑧)) |
| 7 | 6 | com12 30 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → (𝑦(𝐴 × 𝐴)𝑧 → 𝑥(𝐴 × 𝐴)𝑧)) |
| 8 | 7 | adantr 276 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦(𝐴 × 𝐴)𝑧 → 𝑥(𝐴 × 𝐴)𝑧)) |
| 9 | 1, 8 | sylbi 121 | . . . . 5 ⊢ (𝑥(𝐴 × 𝐴)𝑦 → (𝑦(𝐴 × 𝐴)𝑧 → 𝑥(𝐴 × 𝐴)𝑧)) |
| 10 | 9 | imp 124 | . . . 4 ⊢ ((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧) |
| 11 | 10 | ax-gen 1471 | . . 3 ⊢ ∀𝑧((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧) |
| 12 | 11 | gen2 1472 | . 2 ⊢ ∀𝑥∀𝑦∀𝑧((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧) |
| 13 | cotr 5063 | . 2 ⊢ (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) ↔ ∀𝑥∀𝑦∀𝑧((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)) | |
| 14 | 12, 13 | mpbir 146 | 1 ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1370 ∈ wcel 2175 ⊆ wss 3165 class class class wbr 4043 × cxp 4672 ∘ ccom 4678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-rel 4681 df-co 4683 |
| This theorem is referenced by: trinxp 5075 xpider 6692 |
| Copyright terms: Public domain | W3C validator |