![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpidtr | GIF version |
Description: A square cross product (𝐴 × 𝐴) is a transitive relation. (Contributed by FL, 31-Jul-2009.) |
Ref | Expression |
---|---|
xpidtr | ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brxp 4690 | . . . . . 6 ⊢ (𝑥(𝐴 × 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) | |
2 | brxp 4690 | . . . . . . . . 9 ⊢ (𝑦(𝐴 × 𝐴)𝑧 ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) | |
3 | brxp 4690 | . . . . . . . . . . 11 ⊢ (𝑥(𝐴 × 𝐴)𝑧 ↔ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) | |
4 | 3 | simplbi2com 1455 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝑥(𝐴 × 𝐴)𝑧)) |
5 | 4 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥 ∈ 𝐴 → 𝑥(𝐴 × 𝐴)𝑧)) |
6 | 2, 5 | sylbi 121 | . . . . . . . 8 ⊢ (𝑦(𝐴 × 𝐴)𝑧 → (𝑥 ∈ 𝐴 → 𝑥(𝐴 × 𝐴)𝑧)) |
7 | 6 | com12 30 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → (𝑦(𝐴 × 𝐴)𝑧 → 𝑥(𝐴 × 𝐴)𝑧)) |
8 | 7 | adantr 276 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦(𝐴 × 𝐴)𝑧 → 𝑥(𝐴 × 𝐴)𝑧)) |
9 | 1, 8 | sylbi 121 | . . . . 5 ⊢ (𝑥(𝐴 × 𝐴)𝑦 → (𝑦(𝐴 × 𝐴)𝑧 → 𝑥(𝐴 × 𝐴)𝑧)) |
10 | 9 | imp 124 | . . . 4 ⊢ ((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧) |
11 | 10 | ax-gen 1460 | . . 3 ⊢ ∀𝑧((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧) |
12 | 11 | gen2 1461 | . 2 ⊢ ∀𝑥∀𝑦∀𝑧((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧) |
13 | cotr 5047 | . 2 ⊢ (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) ↔ ∀𝑥∀𝑦∀𝑧((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)) | |
14 | 12, 13 | mpbir 146 | 1 ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∈ wcel 2164 ⊆ wss 3153 class class class wbr 4029 × cxp 4657 ∘ ccom 4663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-co 4668 |
This theorem is referenced by: trinxp 5059 xpider 6660 |
Copyright terms: Public domain | W3C validator |