ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpidtr GIF version

Theorem xpidtr 4929
Description: A square cross product (𝐴 × 𝐴) is a transitive relation. (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
xpidtr ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)

Proof of Theorem xpidtr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brxp 4570 . . . . . 6 (𝑥(𝐴 × 𝐴)𝑦 ↔ (𝑥𝐴𝑦𝐴))
2 brxp 4570 . . . . . . . . 9 (𝑦(𝐴 × 𝐴)𝑧 ↔ (𝑦𝐴𝑧𝐴))
3 brxp 4570 . . . . . . . . . . 11 (𝑥(𝐴 × 𝐴)𝑧 ↔ (𝑥𝐴𝑧𝐴))
43simplbi2com 1420 . . . . . . . . . 10 (𝑧𝐴 → (𝑥𝐴𝑥(𝐴 × 𝐴)𝑧))
54adantl 275 . . . . . . . . 9 ((𝑦𝐴𝑧𝐴) → (𝑥𝐴𝑥(𝐴 × 𝐴)𝑧))
62, 5sylbi 120 . . . . . . . 8 (𝑦(𝐴 × 𝐴)𝑧 → (𝑥𝐴𝑥(𝐴 × 𝐴)𝑧))
76com12 30 . . . . . . 7 (𝑥𝐴 → (𝑦(𝐴 × 𝐴)𝑧𝑥(𝐴 × 𝐴)𝑧))
87adantr 274 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑦(𝐴 × 𝐴)𝑧𝑥(𝐴 × 𝐴)𝑧))
91, 8sylbi 120 . . . . 5 (𝑥(𝐴 × 𝐴)𝑦 → (𝑦(𝐴 × 𝐴)𝑧𝑥(𝐴 × 𝐴)𝑧))
109imp 123 . . . 4 ((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)
1110ax-gen 1425 . . 3 𝑧((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)
1211gen2 1426 . 2 𝑥𝑦𝑧((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)
13 cotr 4920 . 2 (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) ↔ ∀𝑥𝑦𝑧((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧))
1412, 13mpbir 145 1 ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1329  wcel 1480  wss 3071   class class class wbr 3929   × cxp 4537  ccom 4543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-co 4548
This theorem is referenced by:  trinxp  4932  xpider  6500
  Copyright terms: Public domain W3C validator