| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simprbda | GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
| Ref | Expression |
|---|---|
| pm3.26bda.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprbda | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.26bda.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | biimpa 296 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simpld 112 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elrabi 2917 cvgratz 11714 subrguss 13868 rhmpropd 13886 lmodfopnelem1 13956 tg1 14379 cldss 14425 cnf2 14525 cncnp 14550 blgt0 14722 xblss2ps 14724 xblss2 14725 dvcnp2cntop 15019 |
| Copyright terms: Public domain | W3C validator |