ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simprbda Unicode version

Theorem simprbda 381
Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.)
Hypothesis
Ref Expression
pm3.26bda.1  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
Assertion
Ref Expression
simprbda  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem simprbda
StepHypRef Expression
1 pm3.26bda.1 . . 3  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
21biimpa 294 . 2  |-  ( (
ph  /\  ps )  ->  ( ch  /\  th ) )
32simpld 111 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  elrabi  2883  cvgratz  11495  tg1  12853  cldss  12899  cnf2  12999  cncnp  13024  blgt0  13196  xblss2ps  13198  xblss2  13199  dvcnp2cntop  13457
  Copyright terms: Public domain W3C validator