ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratz GIF version

Theorem cvgratz 11524
Description: Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
Hypotheses
Ref Expression
cvgratz.1 𝑍 = (ℤ𝑀)
cvgratz.m (𝜑𝑀 ∈ ℤ)
cvgratz.3 (𝜑𝐴 ∈ ℝ)
cvgratz.4 (𝜑𝐴 < 1)
cvgratz.gt0 (𝜑 → 0 < 𝐴)
cvgratz.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
cvgratz.7 ((𝜑𝑘𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
Assertion
Ref Expression
cvgratz (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘

Proof of Theorem cvgratz
Dummy variables 𝑖 𝑥 𝑦 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratz.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21adantr 276 . . . 4 ((𝜑 ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℤ)
3 fveq2 5511 . . . . . 6 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
43eleq1d 2246 . . . . 5 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
5 cvgratz.6 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
65ralrimiva 2550 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
76ad2antrr 488 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
8 cvgratz.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
98eleq2i 2244 . . . . . . 7 (𝑥𝑍𝑥 ∈ (ℤ𝑀))
109biimpri 133 . . . . . 6 (𝑥 ∈ (ℤ𝑀) → 𝑥𝑍)
1110adantl 277 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥𝑍)
124, 7, 11rspcdva 2846 . . . 4 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
13 eluzelz 9526 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1413adantl 277 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℤ)
15 1red 7963 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
161zred 9364 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
1716ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
1814zred 9364 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℝ)
19 simplr 528 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 1 ≤ 𝑀)
20 eluzle 9529 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑀𝑘)
2120adantl 277 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑀𝑘)
2215, 17, 18, 19, 21letrd 8071 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 1 ≤ 𝑘)
23 elnnz1 9265 . . . . . . 7 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
2414, 22, 23sylanbrc 417 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
25 elnnuz 9553 . . . . . . . 8 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
26 fveq2 5511 . . . . . . . . . . . . 13 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2726eleq1d 2246 . . . . . . . . . . . 12 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
28 uzid 9531 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
291, 28syl 14 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ𝑀))
3029, 8eleqtrrdi 2271 . . . . . . . . . . . 12 (𝜑𝑀𝑍)
3127, 6, 30rspcdva 2846 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) ∈ ℂ)
3231ad3antrrr 492 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐹𝑀) ∈ ℂ)
33 cvgratz.3 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
34 cvgratz.gt0 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐴)
3533, 34elrpd 9680 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ+)
3635ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → 𝐴 ∈ ℝ+)
372adantr 276 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑀 ∈ ℤ)
3837adantr 276 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → 𝑀 ∈ ℤ)
3925biimpri 133 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ)
4039adantl 277 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
4140nnzd 9363 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℤ)
4241adantr 276 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → 𝑘 ∈ ℤ)
4338, 42zsubcld 9369 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝑀𝑘) ∈ ℤ)
4436, 43rpexpcld 10663 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐴↑(𝑀𝑘)) ∈ ℝ+)
4544rpcnd 9685 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐴↑(𝑀𝑘)) ∈ ℂ)
4644rpap0d 9689 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐴↑(𝑀𝑘)) # 0)
4732, 45, 46divclapd 8736 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀𝑘))) ∈ ℂ)
48 simplll 533 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝜑)
4937adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑀 ∈ ℤ)
5041adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘 ∈ ℤ)
5116ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑀 ∈ ℝ)
5250zred 9364 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘 ∈ ℝ)
53 simpr 110 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → ¬ 𝑘 < 𝑀)
5451, 52, 53nltled 8068 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑀𝑘)
55 eluz2 9523 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘))
5649, 50, 54, 55syl3anbrc 1181 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘 ∈ (ℤ𝑀))
5756, 8eleqtrrdi 2271 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘𝑍)
5848, 57, 5syl2anc 411 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → (𝐹𝑘) ∈ ℂ)
59 zdclt 9319 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑘 < 𝑀)
6041, 37, 59syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → DECID 𝑘 < 𝑀)
6147, 58, 60ifcldadc 3563 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ)
6225, 61sylan2b 287 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ)
6324, 62syldan 282 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ)
64 breq1 4003 . . . . . . . 8 (𝑖 = 𝑘 → (𝑖 < 𝑀𝑘 < 𝑀))
65 oveq2 5877 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑀𝑖) = (𝑀𝑘))
6665oveq2d 5885 . . . . . . . . 9 (𝑖 = 𝑘 → (𝐴↑(𝑀𝑖)) = (𝐴↑(𝑀𝑘)))
6766oveq2d 5885 . . . . . . . 8 (𝑖 = 𝑘 → ((𝐹𝑀) / (𝐴↑(𝑀𝑖))) = ((𝐹𝑀) / (𝐴↑(𝑀𝑘))))
68 fveq2 5511 . . . . . . . 8 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
6964, 67, 68ifbieq12d 3560 . . . . . . 7 (𝑖 = 𝑘 → if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
70 eqid 2177 . . . . . . 7 (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖))) = (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))
7169, 70fvmptg 5588 . . . . . 6 ((𝑘 ∈ ℕ ∧ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
7224, 63, 71syl2anc 411 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
7317, 18, 21lensymd 8069 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → ¬ 𝑘 < 𝑀)
7473iffalsed 3544 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = (𝐹𝑘))
7572, 74eqtr2d 2211 . . . 4 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘))
76 addcl 7927 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
7776adantl 277 . . . 4 (((𝜑 ∧ 1 ≤ 𝑀) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
782, 12, 75, 77seq3feq 10458 . . 3 ((𝜑 ∧ 1 ≤ 𝑀) → seq𝑀( + , 𝐹) = seq𝑀( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))))
7933adantr 276 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 𝐴 ∈ ℝ)
80 cvgratz.4 . . . . . 6 (𝜑𝐴 < 1)
8180adantr 276 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 𝐴 < 1)
8234adantr 276 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 0 < 𝐴)
8371eleq1d 2246 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ) → (((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ ↔ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ))
8440, 61, 83syl2anc 411 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → (((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ ↔ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ))
8561, 84mpbird 167 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ)
8625, 85sylan2b 287 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ)
8731ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐹𝑀) ∈ ℂ)
8835ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝐴 ∈ ℝ+)
892ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℤ)
9025, 41sylan2b 287 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
9190adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 ∈ ℤ)
9291peano2zd 9367 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℤ)
9389, 92zsubcld 9369 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑀 − (𝑘 + 1)) ∈ ℤ)
9488, 93rpexpcld 10663 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴↑(𝑀 − (𝑘 + 1))) ∈ ℝ+)
9594rpcnd 9685 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴↑(𝑀 − (𝑘 + 1))) ∈ ℂ)
9694rpap0d 9689 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴↑(𝑀 − (𝑘 + 1))) # 0)
9787, 95, 96divclapd 8736 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))) ∈ ℂ)
98 fveq2 5511 . . . . . . . . . . . 12 (𝑎 = (𝑘 + 1) → (𝐹𝑎) = (𝐹‘(𝑘 + 1)))
9998eleq1d 2246 . . . . . . . . . . 11 (𝑎 = (𝑘 + 1) → ((𝐹𝑎) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
100 fveq2 5511 . . . . . . . . . . . . . . 15 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
101100eleq1d 2246 . . . . . . . . . . . . . 14 (𝑘 = 𝑎 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑎) ∈ ℂ))
102101cbvralv 2703 . . . . . . . . . . . . 13 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑎𝑍 (𝐹𝑎) ∈ ℂ)
1036, 102sylib 122 . . . . . . . . . . . 12 (𝜑 → ∀𝑎𝑍 (𝐹𝑎) ∈ ℂ)
104103ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → ∀𝑎𝑍 (𝐹𝑎) ∈ ℂ)
1052ad2antrr 488 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℤ)
106 peano2nn 8920 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
107106adantl 277 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
108107nnzd 9363 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℤ)
109108adantr 276 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℤ)
11016ad3antrrr 492 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℝ)
111107nnred 8921 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
112111adantr 276 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℝ)
113 simpr 110 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → ¬ (𝑘 + 1) < 𝑀)
114110, 112, 113nltled 8068 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → 𝑀 ≤ (𝑘 + 1))
115 eluz2 9523 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑘 + 1)))
116105, 109, 114, 115syl3anbrc 1181 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ (ℤ𝑀))
117116, 8eleqtrrdi 2271 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ 𝑍)
11899, 104, 117rspcdva 2846 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
1192adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℤ)
120 zdclt 9319 . . . . . . . . . . 11 (((𝑘 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID (𝑘 + 1) < 𝑀)
121108, 119, 120syl2anc 411 . . . . . . . . . 10 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → DECID (𝑘 + 1) < 𝑀)
12297, 118, 121ifcldadc 3563 . . . . . . . . 9 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) ∈ ℂ)
123122abscld 11174 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ∈ ℝ)
12416recnd 7976 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℂ)
125124ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℂ)
126 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
127126nncnd 8922 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
128 1cnd 7964 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
129125, 127, 128subsub4d 8289 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑀𝑘) − 1) = (𝑀 − (𝑘 + 1)))
130129oveq2d 5885 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑((𝑀𝑘) − 1)) = (𝐴↑(𝑀 − (𝑘 + 1))))
13133recnd 7976 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
132131ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
13333, 34gt0ap0d 8576 . . . . . . . . . . . . . . . 16 (𝜑𝐴 # 0)
134133ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝐴 # 0)
135119, 90zsubcld 9369 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑀𝑘) ∈ ℤ)
136132, 134, 135expm1apd 10649 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑((𝑀𝑘) − 1)) = ((𝐴↑(𝑀𝑘)) / 𝐴))
137130, 136eqtr3d 2212 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑀 − (𝑘 + 1))) = ((𝐴↑(𝑀𝑘)) / 𝐴))
138137oveq2d 5885 . . . . . . . . . . . 12 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))) = ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)))
139138adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))) = ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)))
140 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑘 + 1) < 𝑀)
141140iftrued 3541 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))))
142126nnred 8921 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
143142adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 ∈ ℝ)
144 peano2re 8083 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
145143, 144syl 14 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℝ)
14616ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℝ)
147143ltp1d 8876 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 < (𝑘 + 1))
148143, 145, 146, 147, 140lttrd 8073 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 < 𝑀)
149148iftrued 3541 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = ((𝐹𝑀) / (𝐴↑(𝑀𝑘))))
150149oveq2d 5885 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
15131ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐹𝑀) ∈ ℂ)
152132, 134, 135expclzapd 10644 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑀𝑘)) ∈ ℂ)
153132, 134, 135expap0d 10645 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑀𝑘)) # 0)
154151, 152, 132, 153, 134divdivap2d 8769 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)) = (((𝐹𝑀) · 𝐴) / (𝐴↑(𝑀𝑘))))
155151, 132mulcomd 7969 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) · 𝐴) = (𝐴 · (𝐹𝑀)))
156155oveq1d 5884 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑀) · 𝐴) / (𝐴↑(𝑀𝑘))) = ((𝐴 · (𝐹𝑀)) / (𝐴↑(𝑀𝑘))))
157132, 151, 152, 153divassapd 8772 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐴 · (𝐹𝑀)) / (𝐴↑(𝑀𝑘))) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
158154, 156, 1573eqtrd 2214 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
159158adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
160150, 159eqtr4d 2213 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)))
161139, 141, 1603eqtr4d 2220 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))))
162161fveq2d 5515 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
163132, 62absmuld 11187 . . . . . . . . . 10 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
164163adantr 276 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
16535rpge0d 9687 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝐴)
16633, 165absidd 11160 . . . . . . . . . . 11 (𝜑 → (abs‘𝐴) = 𝐴)
167166oveq1d 5884 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
168167ad3antrrr 492 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
169162, 164, 1683eqtrd 2214 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
170 eqle 8039 . . . . . . . 8 (((abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ∈ ℝ ∧ (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))))) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
171123, 169, 170syl2an2r 595 . . . . . . 7 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
17216ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℝ)
173111, 172lttri3d 8062 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) = 𝑀 ↔ (¬ (𝑘 + 1) < 𝑀 ∧ ¬ 𝑀 < (𝑘 + 1))))
174173simprbda 383 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ¬ (𝑘 + 1) < 𝑀)
175174iffalsed 3544 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
176 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝑘 + 1) = 𝑀)
177176fveq2d 5515 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐹‘(𝑘 + 1)) = (𝐹𝑀))
178175, 177eqtrd 2210 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐹𝑀))
179178fveq2d 5515 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (abs‘(𝐹𝑀)))
180142adantr 276 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 ∈ ℝ)
181180ltp1d 8876 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 < (𝑘 + 1))
182 breq2 4004 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) = 𝑀 → (𝑘 < (𝑘 + 1) ↔ 𝑘 < 𝑀))
183182adantl 277 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝑘 < (𝑘 + 1) ↔ 𝑘 < 𝑀))
184181, 183mpbid 147 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 < 𝑀)
185184iftrued 3541 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = ((𝐹𝑀) / (𝐴↑(𝑀𝑘))))
186176oveq1d 5884 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ((𝑘 + 1) − 𝑘) = (𝑀𝑘))
187127adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 ∈ ℂ)
188 1cnd 7964 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 1 ∈ ℂ)
189187, 188pncan2d 8260 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ((𝑘 + 1) − 𝑘) = 1)
190186, 189eqtr3d 2212 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝑀𝑘) = 1)
191190oveq2d 5885 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴↑(𝑀𝑘)) = (𝐴↑1))
192132adantr 276 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝐴 ∈ ℂ)
193192exp1d 10634 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴↑1) = 𝐴)
194191, 193eqtrd 2210 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴↑(𝑀𝑘)) = 𝐴)
195194oveq2d 5885 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀𝑘))) = ((𝐹𝑀) / 𝐴))
196185, 195eqtrd 2210 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = ((𝐹𝑀) / 𝐴))
197196oveq2d 5885 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (𝐴 · ((𝐹𝑀) / 𝐴)))
19831, 131, 133divcanap2d 8738 . . . . . . . . . . . 12 (𝜑 → (𝐴 · ((𝐹𝑀) / 𝐴)) = (𝐹𝑀))
199198ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴 · ((𝐹𝑀) / 𝐴)) = (𝐹𝑀))
200197, 199eqtrd 2210 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (𝐹𝑀))
201200fveq2d 5515 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (abs‘(𝐹𝑀)))
202167ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
203163, 202eqtrd 2210 . . . . . . . . . 10 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
204203adantr 276 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
205179, 201, 2043eqtr2d 2216 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
206123, 205, 170syl2an2r 595 . . . . . . 7 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
207 simplll 533 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝜑)
208119adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀 ∈ ℤ)
20990adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘 ∈ ℤ)
210 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1))
211 zleltp1 9297 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀𝑘𝑀 < (𝑘 + 1)))
212119, 209, 211syl2an2r 595 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (𝑀𝑘𝑀 < (𝑘 + 1)))
213210, 212mpbird 167 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀𝑘)
214208, 209, 213, 55syl3anbrc 1181 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘 ∈ (ℤ𝑀))
215214, 8eleqtrrdi 2271 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘𝑍)
216 cvgratz.7 . . . . . . . . 9 ((𝜑𝑘𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
217207, 215, 216syl2anc 411 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
218172adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀 ∈ ℝ)
219111adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (𝑘 + 1) ∈ ℝ)
220218, 219, 210ltnsymd 8067 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → ¬ (𝑘 + 1) < 𝑀)
221220iffalsed 3544 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
222221fveq2d 5515 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (abs‘(𝐹‘(𝑘 + 1))))
223142adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘 ∈ ℝ)
224218, 223, 213lensymd 8069 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → ¬ 𝑘 < 𝑀)
225224iffalsed 3544 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = (𝐹𝑘))
226225fveq2d 5515 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (abs‘(𝐹𝑘)))
227226oveq2d 5885 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘(𝐹𝑘))))
228217, 222, 2273brtr4d 4032 . . . . . . 7 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
229 ztri3or 9285 . . . . . . . 8 (((𝑘 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑘 + 1) < 𝑀 ∨ (𝑘 + 1) = 𝑀𝑀 < (𝑘 + 1)))
230108, 119, 229syl2anc 411 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) < 𝑀 ∨ (𝑘 + 1) = 𝑀𝑀 < (𝑘 + 1)))
231171, 206, 228, 230mpjao3dan 1307 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
232 breq1 4003 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → (𝑖 < 𝑀 ↔ (𝑘 + 1) < 𝑀))
233 oveq2 5877 . . . . . . . . . . . 12 (𝑖 = (𝑘 + 1) → (𝑀𝑖) = (𝑀 − (𝑘 + 1)))
234233oveq2d 5885 . . . . . . . . . . 11 (𝑖 = (𝑘 + 1) → (𝐴↑(𝑀𝑖)) = (𝐴↑(𝑀 − (𝑘 + 1))))
235234oveq2d 5885 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → ((𝐹𝑀) / (𝐴↑(𝑀𝑖))) = ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))))
236 fveq2 5511 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
237232, 235, 236ifbieq12d 3560 . . . . . . . . 9 (𝑖 = (𝑘 + 1) → if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)) = if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))))
238237, 70fvmptg 5588 . . . . . . . 8 (((𝑘 + 1) ∈ ℕ ∧ if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) ∈ ℂ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1)) = if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))))
239107, 122, 238syl2anc 411 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1)) = if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))))
240239fveq2d 5515 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1))) = (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))))
241126, 62, 71syl2anc 411 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
242241fveq2d 5515 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘)) = (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))))
243242oveq2d 5885 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴 · (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
244231, 240, 2433brtr4d 4032 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1))) ≤ (𝐴 · (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘))))
24579, 81, 82, 86, 244cvgratnn 11523 . . . 4 ((𝜑 ∧ 1 ≤ 𝑀) → seq1( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ )
246 eqid 2177 . . . . 5 (ℤ‘1) = (ℤ‘1)
247 1zzd 9269 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝑀) → 1 ∈ ℤ)
248 simpr 110 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝑀) → 1 ≤ 𝑀)
249 eluz2 9523 . . . . . 6 (𝑀 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 1 ≤ 𝑀))
250247, 2, 248, 249syl3anbrc 1181 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 𝑀 ∈ (ℤ‘1))
251246, 250, 85iserex 11331 . . . 4 ((𝜑 ∧ 1 ≤ 𝑀) → (seq1( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ ))
252245, 251mpbid 147 . . 3 ((𝜑 ∧ 1 ≤ 𝑀) → seq𝑀( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ )
25378, 252eqeltrd 2254 . 2 ((𝜑 ∧ 1 ≤ 𝑀) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
25433adantr 276 . . . 4 ((𝜑𝑀 ≤ 1) → 𝐴 ∈ ℝ)
25580adantr 276 . . . 4 ((𝜑𝑀 ≤ 1) → 𝐴 < 1)
25634adantr 276 . . . 4 ((𝜑𝑀 ≤ 1) → 0 < 𝐴)
2571adantr 276 . . . . . . 7 ((𝜑𝑀 ≤ 1) → 𝑀 ∈ ℤ)
258257adantr 276 . . . . . 6 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℤ)
259 nnz 9261 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
260259adantl 277 . . . . . 6 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
261258zred 9364 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℝ)
262 1red 7963 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
263260zred 9364 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
264 simplr 528 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀 ≤ 1)
265 nnge1 8931 . . . . . . . 8 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
266265adantl 277 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑘)
267261, 262, 263, 264, 266letrd 8071 . . . . . 6 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀𝑘)
268258, 260, 267, 55syl3anbrc 1181 . . . . 5 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ𝑀))
2698eleq2i 2244 . . . . . . 7 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
270269, 5sylan2br 288 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
271270adantlr 477 . . . . 5 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
272268, 271syldan 282 . . . 4 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
273269, 216sylan2br 288 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
274273adantlr 477 . . . . 5 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
275268, 274syldan 282 . . . 4 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
276254, 255, 256, 272, 275cvgratnn 11523 . . 3 ((𝜑𝑀 ≤ 1) → seq1( + , 𝐹) ∈ dom ⇝ )
277 eqid 2177 . . . 4 (ℤ𝑀) = (ℤ𝑀)
278 1zzd 9269 . . . . 5 ((𝜑𝑀 ≤ 1) → 1 ∈ ℤ)
279 simpr 110 . . . . 5 ((𝜑𝑀 ≤ 1) → 𝑀 ≤ 1)
280 eluz2 9523 . . . . 5 (1 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑀 ≤ 1))
281257, 278, 279, 280syl3anbrc 1181 . . . 4 ((𝜑𝑀 ≤ 1) → 1 ∈ (ℤ𝑀))
282277, 281, 271iserex 11331 . . 3 ((𝜑𝑀 ≤ 1) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq1( + , 𝐹) ∈ dom ⇝ ))
283276, 282mpbird 167 . 2 ((𝜑𝑀 ≤ 1) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
284 1z 9268 . . 3 1 ∈ ℤ
285 zletric 9286 . . 3 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀𝑀 ≤ 1))
286284, 1, 285sylancr 414 . 2 (𝜑 → (1 ≤ 𝑀𝑀 ≤ 1))
287253, 283, 286mpjaodan 798 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834  w3o 977   = wceq 1353  wcel 2148  wral 2455  ifcif 3534   class class class wbr 4000  cmpt 4061  dom cdm 4623  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118   # cap 8528   / cdiv 8618  cn 8908  cz 9242  cuz 9517  +crp 9640  seqcseq 10431  cexp 10505  abscabs 10990  cli 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-ico 9881  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  cvgratgt0  11525
  Copyright terms: Public domain W3C validator