ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratz GIF version

Theorem cvgratz 11473
Description: Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
Hypotheses
Ref Expression
cvgratz.1 𝑍 = (ℤ𝑀)
cvgratz.m (𝜑𝑀 ∈ ℤ)
cvgratz.3 (𝜑𝐴 ∈ ℝ)
cvgratz.4 (𝜑𝐴 < 1)
cvgratz.gt0 (𝜑 → 0 < 𝐴)
cvgratz.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
cvgratz.7 ((𝜑𝑘𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
Assertion
Ref Expression
cvgratz (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘

Proof of Theorem cvgratz
Dummy variables 𝑖 𝑥 𝑦 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratz.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21adantr 274 . . . 4 ((𝜑 ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℤ)
3 fveq2 5486 . . . . . 6 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
43eleq1d 2235 . . . . 5 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
5 cvgratz.6 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
65ralrimiva 2539 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
76ad2antrr 480 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
8 cvgratz.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
98eleq2i 2233 . . . . . . 7 (𝑥𝑍𝑥 ∈ (ℤ𝑀))
109biimpri 132 . . . . . 6 (𝑥 ∈ (ℤ𝑀) → 𝑥𝑍)
1110adantl 275 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥𝑍)
124, 7, 11rspcdva 2835 . . . 4 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
13 eluzelz 9475 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1413adantl 275 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℤ)
15 1red 7914 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
161zred 9313 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
1716ad2antrr 480 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
1814zred 9313 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℝ)
19 simplr 520 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 1 ≤ 𝑀)
20 eluzle 9478 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑀𝑘)
2120adantl 275 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑀𝑘)
2215, 17, 18, 19, 21letrd 8022 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 1 ≤ 𝑘)
23 elnnz1 9214 . . . . . . 7 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
2414, 22, 23sylanbrc 414 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
25 elnnuz 9502 . . . . . . . 8 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
26 fveq2 5486 . . . . . . . . . . . . 13 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2726eleq1d 2235 . . . . . . . . . . . 12 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
28 uzid 9480 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
291, 28syl 14 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ𝑀))
3029, 8eleqtrrdi 2260 . . . . . . . . . . . 12 (𝜑𝑀𝑍)
3127, 6, 30rspcdva 2835 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) ∈ ℂ)
3231ad3antrrr 484 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐹𝑀) ∈ ℂ)
33 cvgratz.3 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
34 cvgratz.gt0 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐴)
3533, 34elrpd 9629 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ+)
3635ad3antrrr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → 𝐴 ∈ ℝ+)
372adantr 274 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑀 ∈ ℤ)
3837adantr 274 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → 𝑀 ∈ ℤ)
3925biimpri 132 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ)
4039adantl 275 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
4140nnzd 9312 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℤ)
4241adantr 274 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → 𝑘 ∈ ℤ)
4338, 42zsubcld 9318 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝑀𝑘) ∈ ℤ)
4436, 43rpexpcld 10612 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐴↑(𝑀𝑘)) ∈ ℝ+)
4544rpcnd 9634 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐴↑(𝑀𝑘)) ∈ ℂ)
4644rpap0d 9638 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐴↑(𝑀𝑘)) # 0)
4732, 45, 46divclapd 8686 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀𝑘))) ∈ ℂ)
48 simplll 523 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝜑)
4937adantr 274 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑀 ∈ ℤ)
5041adantr 274 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘 ∈ ℤ)
5116ad3antrrr 484 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑀 ∈ ℝ)
5250zred 9313 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘 ∈ ℝ)
53 simpr 109 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → ¬ 𝑘 < 𝑀)
5451, 52, 53nltled 8019 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑀𝑘)
55 eluz2 9472 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘))
5649, 50, 54, 55syl3anbrc 1171 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘 ∈ (ℤ𝑀))
5756, 8eleqtrrdi 2260 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘𝑍)
5848, 57, 5syl2anc 409 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → (𝐹𝑘) ∈ ℂ)
59 zdclt 9268 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑘 < 𝑀)
6041, 37, 59syl2anc 409 . . . . . . . . 9 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → DECID 𝑘 < 𝑀)
6147, 58, 60ifcldadc 3549 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ)
6225, 61sylan2b 285 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ)
6324, 62syldan 280 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ)
64 breq1 3985 . . . . . . . 8 (𝑖 = 𝑘 → (𝑖 < 𝑀𝑘 < 𝑀))
65 oveq2 5850 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑀𝑖) = (𝑀𝑘))
6665oveq2d 5858 . . . . . . . . 9 (𝑖 = 𝑘 → (𝐴↑(𝑀𝑖)) = (𝐴↑(𝑀𝑘)))
6766oveq2d 5858 . . . . . . . 8 (𝑖 = 𝑘 → ((𝐹𝑀) / (𝐴↑(𝑀𝑖))) = ((𝐹𝑀) / (𝐴↑(𝑀𝑘))))
68 fveq2 5486 . . . . . . . 8 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
6964, 67, 68ifbieq12d 3546 . . . . . . 7 (𝑖 = 𝑘 → if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
70 eqid 2165 . . . . . . 7 (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖))) = (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))
7169, 70fvmptg 5562 . . . . . 6 ((𝑘 ∈ ℕ ∧ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
7224, 63, 71syl2anc 409 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
7317, 18, 21lensymd 8020 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → ¬ 𝑘 < 𝑀)
7473iffalsed 3530 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = (𝐹𝑘))
7572, 74eqtr2d 2199 . . . 4 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘))
76 addcl 7878 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
7776adantl 275 . . . 4 (((𝜑 ∧ 1 ≤ 𝑀) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
782, 12, 75, 77seq3feq 10407 . . 3 ((𝜑 ∧ 1 ≤ 𝑀) → seq𝑀( + , 𝐹) = seq𝑀( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))))
7933adantr 274 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 𝐴 ∈ ℝ)
80 cvgratz.4 . . . . . 6 (𝜑𝐴 < 1)
8180adantr 274 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 𝐴 < 1)
8234adantr 274 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 0 < 𝐴)
8371eleq1d 2235 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ) → (((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ ↔ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ))
8440, 61, 83syl2anc 409 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → (((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ ↔ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ))
8561, 84mpbird 166 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ)
8625, 85sylan2b 285 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ)
8731ad3antrrr 484 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐹𝑀) ∈ ℂ)
8835ad3antrrr 484 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝐴 ∈ ℝ+)
892ad2antrr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℤ)
9025, 41sylan2b 285 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
9190adantr 274 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 ∈ ℤ)
9291peano2zd 9316 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℤ)
9389, 92zsubcld 9318 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑀 − (𝑘 + 1)) ∈ ℤ)
9488, 93rpexpcld 10612 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴↑(𝑀 − (𝑘 + 1))) ∈ ℝ+)
9594rpcnd 9634 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴↑(𝑀 − (𝑘 + 1))) ∈ ℂ)
9694rpap0d 9638 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴↑(𝑀 − (𝑘 + 1))) # 0)
9787, 95, 96divclapd 8686 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))) ∈ ℂ)
98 fveq2 5486 . . . . . . . . . . . 12 (𝑎 = (𝑘 + 1) → (𝐹𝑎) = (𝐹‘(𝑘 + 1)))
9998eleq1d 2235 . . . . . . . . . . 11 (𝑎 = (𝑘 + 1) → ((𝐹𝑎) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
100 fveq2 5486 . . . . . . . . . . . . . . 15 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
101100eleq1d 2235 . . . . . . . . . . . . . 14 (𝑘 = 𝑎 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑎) ∈ ℂ))
102101cbvralv 2692 . . . . . . . . . . . . 13 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑎𝑍 (𝐹𝑎) ∈ ℂ)
1036, 102sylib 121 . . . . . . . . . . . 12 (𝜑 → ∀𝑎𝑍 (𝐹𝑎) ∈ ℂ)
104103ad3antrrr 484 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → ∀𝑎𝑍 (𝐹𝑎) ∈ ℂ)
1052ad2antrr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℤ)
106 peano2nn 8869 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
107106adantl 275 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
108107nnzd 9312 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℤ)
109108adantr 274 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℤ)
11016ad3antrrr 484 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℝ)
111107nnred 8870 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
112111adantr 274 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℝ)
113 simpr 109 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → ¬ (𝑘 + 1) < 𝑀)
114110, 112, 113nltled 8019 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → 𝑀 ≤ (𝑘 + 1))
115 eluz2 9472 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑘 + 1)))
116105, 109, 114, 115syl3anbrc 1171 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ (ℤ𝑀))
117116, 8eleqtrrdi 2260 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ 𝑍)
11899, 104, 117rspcdva 2835 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
1192adantr 274 . . . . . . . . . . 11 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℤ)
120 zdclt 9268 . . . . . . . . . . 11 (((𝑘 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID (𝑘 + 1) < 𝑀)
121108, 119, 120syl2anc 409 . . . . . . . . . 10 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → DECID (𝑘 + 1) < 𝑀)
12297, 118, 121ifcldadc 3549 . . . . . . . . 9 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) ∈ ℂ)
123122abscld 11123 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ∈ ℝ)
12416recnd 7927 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℂ)
125124ad2antrr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℂ)
126 simpr 109 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
127126nncnd 8871 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
128 1cnd 7915 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
129125, 127, 128subsub4d 8240 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑀𝑘) − 1) = (𝑀 − (𝑘 + 1)))
130129oveq2d 5858 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑((𝑀𝑘) − 1)) = (𝐴↑(𝑀 − (𝑘 + 1))))
13133recnd 7927 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
132131ad2antrr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
13333, 34gt0ap0d 8527 . . . . . . . . . . . . . . . 16 (𝜑𝐴 # 0)
134133ad2antrr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝐴 # 0)
135119, 90zsubcld 9318 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑀𝑘) ∈ ℤ)
136132, 134, 135expm1apd 10598 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑((𝑀𝑘) − 1)) = ((𝐴↑(𝑀𝑘)) / 𝐴))
137130, 136eqtr3d 2200 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑀 − (𝑘 + 1))) = ((𝐴↑(𝑀𝑘)) / 𝐴))
138137oveq2d 5858 . . . . . . . . . . . 12 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))) = ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)))
139138adantr 274 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))) = ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)))
140 simpr 109 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑘 + 1) < 𝑀)
141140iftrued 3527 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))))
142126nnred 8870 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
143142adantr 274 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 ∈ ℝ)
144 peano2re 8034 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
145143, 144syl 14 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℝ)
14616ad3antrrr 484 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℝ)
147143ltp1d 8825 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 < (𝑘 + 1))
148143, 145, 146, 147, 140lttrd 8024 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 < 𝑀)
149148iftrued 3527 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = ((𝐹𝑀) / (𝐴↑(𝑀𝑘))))
150149oveq2d 5858 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
15131ad2antrr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐹𝑀) ∈ ℂ)
152132, 134, 135expclzapd 10593 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑀𝑘)) ∈ ℂ)
153132, 134, 135expap0d 10594 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑀𝑘)) # 0)
154151, 152, 132, 153, 134divdivap2d 8719 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)) = (((𝐹𝑀) · 𝐴) / (𝐴↑(𝑀𝑘))))
155151, 132mulcomd 7920 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) · 𝐴) = (𝐴 · (𝐹𝑀)))
156155oveq1d 5857 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑀) · 𝐴) / (𝐴↑(𝑀𝑘))) = ((𝐴 · (𝐹𝑀)) / (𝐴↑(𝑀𝑘))))
157132, 151, 152, 153divassapd 8722 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐴 · (𝐹𝑀)) / (𝐴↑(𝑀𝑘))) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
158154, 156, 1573eqtrd 2202 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
159158adantr 274 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
160150, 159eqtr4d 2201 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)))
161139, 141, 1603eqtr4d 2208 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))))
162161fveq2d 5490 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
163132, 62absmuld 11136 . . . . . . . . . 10 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
164163adantr 274 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
16535rpge0d 9636 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝐴)
16633, 165absidd 11109 . . . . . . . . . . 11 (𝜑 → (abs‘𝐴) = 𝐴)
167166oveq1d 5857 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
168167ad3antrrr 484 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
169162, 164, 1683eqtrd 2202 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
170 eqle 7990 . . . . . . . 8 (((abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ∈ ℝ ∧ (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))))) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
171123, 169, 170syl2an2r 585 . . . . . . 7 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
17216ad2antrr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℝ)
173111, 172lttri3d 8013 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) = 𝑀 ↔ (¬ (𝑘 + 1) < 𝑀 ∧ ¬ 𝑀 < (𝑘 + 1))))
174173simprbda 381 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ¬ (𝑘 + 1) < 𝑀)
175174iffalsed 3530 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
176 simpr 109 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝑘 + 1) = 𝑀)
177176fveq2d 5490 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐹‘(𝑘 + 1)) = (𝐹𝑀))
178175, 177eqtrd 2198 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐹𝑀))
179178fveq2d 5490 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (abs‘(𝐹𝑀)))
180142adantr 274 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 ∈ ℝ)
181180ltp1d 8825 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 < (𝑘 + 1))
182 breq2 3986 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) = 𝑀 → (𝑘 < (𝑘 + 1) ↔ 𝑘 < 𝑀))
183182adantl 275 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝑘 < (𝑘 + 1) ↔ 𝑘 < 𝑀))
184181, 183mpbid 146 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 < 𝑀)
185184iftrued 3527 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = ((𝐹𝑀) / (𝐴↑(𝑀𝑘))))
186176oveq1d 5857 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ((𝑘 + 1) − 𝑘) = (𝑀𝑘))
187127adantr 274 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 ∈ ℂ)
188 1cnd 7915 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 1 ∈ ℂ)
189187, 188pncan2d 8211 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ((𝑘 + 1) − 𝑘) = 1)
190186, 189eqtr3d 2200 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝑀𝑘) = 1)
191190oveq2d 5858 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴↑(𝑀𝑘)) = (𝐴↑1))
192132adantr 274 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝐴 ∈ ℂ)
193192exp1d 10583 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴↑1) = 𝐴)
194191, 193eqtrd 2198 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴↑(𝑀𝑘)) = 𝐴)
195194oveq2d 5858 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀𝑘))) = ((𝐹𝑀) / 𝐴))
196185, 195eqtrd 2198 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = ((𝐹𝑀) / 𝐴))
197196oveq2d 5858 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (𝐴 · ((𝐹𝑀) / 𝐴)))
19831, 131, 133divcanap2d 8688 . . . . . . . . . . . 12 (𝜑 → (𝐴 · ((𝐹𝑀) / 𝐴)) = (𝐹𝑀))
199198ad3antrrr 484 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴 · ((𝐹𝑀) / 𝐴)) = (𝐹𝑀))
200197, 199eqtrd 2198 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (𝐹𝑀))
201200fveq2d 5490 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (abs‘(𝐹𝑀)))
202167ad2antrr 480 . . . . . . . . . . 11 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
203163, 202eqtrd 2198 . . . . . . . . . 10 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
204203adantr 274 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
205179, 201, 2043eqtr2d 2204 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
206123, 205, 170syl2an2r 585 . . . . . . 7 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
207 simplll 523 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝜑)
208119adantr 274 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀 ∈ ℤ)
20990adantr 274 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘 ∈ ℤ)
210 simpr 109 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1))
211 zleltp1 9246 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀𝑘𝑀 < (𝑘 + 1)))
212119, 209, 211syl2an2r 585 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (𝑀𝑘𝑀 < (𝑘 + 1)))
213210, 212mpbird 166 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀𝑘)
214208, 209, 213, 55syl3anbrc 1171 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘 ∈ (ℤ𝑀))
215214, 8eleqtrrdi 2260 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘𝑍)
216 cvgratz.7 . . . . . . . . 9 ((𝜑𝑘𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
217207, 215, 216syl2anc 409 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
218172adantr 274 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀 ∈ ℝ)
219111adantr 274 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (𝑘 + 1) ∈ ℝ)
220218, 219, 210ltnsymd 8018 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → ¬ (𝑘 + 1) < 𝑀)
221220iffalsed 3530 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
222221fveq2d 5490 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (abs‘(𝐹‘(𝑘 + 1))))
223142adantr 274 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘 ∈ ℝ)
224218, 223, 213lensymd 8020 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → ¬ 𝑘 < 𝑀)
225224iffalsed 3530 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = (𝐹𝑘))
226225fveq2d 5490 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (abs‘(𝐹𝑘)))
227226oveq2d 5858 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘(𝐹𝑘))))
228217, 222, 2273brtr4d 4014 . . . . . . 7 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
229 ztri3or 9234 . . . . . . . 8 (((𝑘 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑘 + 1) < 𝑀 ∨ (𝑘 + 1) = 𝑀𝑀 < (𝑘 + 1)))
230108, 119, 229syl2anc 409 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) < 𝑀 ∨ (𝑘 + 1) = 𝑀𝑀 < (𝑘 + 1)))
231171, 206, 228, 230mpjao3dan 1297 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
232 breq1 3985 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → (𝑖 < 𝑀 ↔ (𝑘 + 1) < 𝑀))
233 oveq2 5850 . . . . . . . . . . . 12 (𝑖 = (𝑘 + 1) → (𝑀𝑖) = (𝑀 − (𝑘 + 1)))
234233oveq2d 5858 . . . . . . . . . . 11 (𝑖 = (𝑘 + 1) → (𝐴↑(𝑀𝑖)) = (𝐴↑(𝑀 − (𝑘 + 1))))
235234oveq2d 5858 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → ((𝐹𝑀) / (𝐴↑(𝑀𝑖))) = ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))))
236 fveq2 5486 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
237232, 235, 236ifbieq12d 3546 . . . . . . . . 9 (𝑖 = (𝑘 + 1) → if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)) = if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))))
238237, 70fvmptg 5562 . . . . . . . 8 (((𝑘 + 1) ∈ ℕ ∧ if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) ∈ ℂ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1)) = if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))))
239107, 122, 238syl2anc 409 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1)) = if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))))
240239fveq2d 5490 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1))) = (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))))
241126, 62, 71syl2anc 409 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
242241fveq2d 5490 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘)) = (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))))
243242oveq2d 5858 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴 · (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
244231, 240, 2433brtr4d 4014 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1))) ≤ (𝐴 · (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘))))
24579, 81, 82, 86, 244cvgratnn 11472 . . . 4 ((𝜑 ∧ 1 ≤ 𝑀) → seq1( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ )
246 eqid 2165 . . . . 5 (ℤ‘1) = (ℤ‘1)
247 1zzd 9218 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝑀) → 1 ∈ ℤ)
248 simpr 109 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝑀) → 1 ≤ 𝑀)
249 eluz2 9472 . . . . . 6 (𝑀 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 1 ≤ 𝑀))
250247, 2, 248, 249syl3anbrc 1171 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 𝑀 ∈ (ℤ‘1))
251246, 250, 85iserex 11280 . . . 4 ((𝜑 ∧ 1 ≤ 𝑀) → (seq1( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ ))
252245, 251mpbid 146 . . 3 ((𝜑 ∧ 1 ≤ 𝑀) → seq𝑀( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ )
25378, 252eqeltrd 2243 . 2 ((𝜑 ∧ 1 ≤ 𝑀) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
25433adantr 274 . . . 4 ((𝜑𝑀 ≤ 1) → 𝐴 ∈ ℝ)
25580adantr 274 . . . 4 ((𝜑𝑀 ≤ 1) → 𝐴 < 1)
25634adantr 274 . . . 4 ((𝜑𝑀 ≤ 1) → 0 < 𝐴)
2571adantr 274 . . . . . . 7 ((𝜑𝑀 ≤ 1) → 𝑀 ∈ ℤ)
258257adantr 274 . . . . . 6 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℤ)
259 nnz 9210 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
260259adantl 275 . . . . . 6 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
261258zred 9313 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℝ)
262 1red 7914 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
263260zred 9313 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
264 simplr 520 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀 ≤ 1)
265 nnge1 8880 . . . . . . . 8 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
266265adantl 275 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑘)
267261, 262, 263, 264, 266letrd 8022 . . . . . 6 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀𝑘)
268258, 260, 267, 55syl3anbrc 1171 . . . . 5 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ𝑀))
2698eleq2i 2233 . . . . . . 7 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
270269, 5sylan2br 286 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
271270adantlr 469 . . . . 5 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
272268, 271syldan 280 . . . 4 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
273269, 216sylan2br 286 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
274273adantlr 469 . . . . 5 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
275268, 274syldan 280 . . . 4 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
276254, 255, 256, 272, 275cvgratnn 11472 . . 3 ((𝜑𝑀 ≤ 1) → seq1( + , 𝐹) ∈ dom ⇝ )
277 eqid 2165 . . . 4 (ℤ𝑀) = (ℤ𝑀)
278 1zzd 9218 . . . . 5 ((𝜑𝑀 ≤ 1) → 1 ∈ ℤ)
279 simpr 109 . . . . 5 ((𝜑𝑀 ≤ 1) → 𝑀 ≤ 1)
280 eluz2 9472 . . . . 5 (1 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑀 ≤ 1))
281257, 278, 279, 280syl3anbrc 1171 . . . 4 ((𝜑𝑀 ≤ 1) → 1 ∈ (ℤ𝑀))
282277, 281, 271iserex 11280 . . 3 ((𝜑𝑀 ≤ 1) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq1( + , 𝐹) ∈ dom ⇝ ))
283276, 282mpbird 166 . 2 ((𝜑𝑀 ≤ 1) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
284 1z 9217 . . 3 1 ∈ ℤ
285 zletric 9235 . . 3 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀𝑀 ≤ 1))
286284, 1, 285sylancr 411 . 2 (𝜑 → (1 ≤ 𝑀𝑀 ≤ 1))
287253, 283, 286mpjaodan 788 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824  w3o 967   = wceq 1343  wcel 2136  wral 2444  ifcif 3520   class class class wbr 3982  cmpt 4043  dom cdm 4604  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069   # cap 8479   / cdiv 8568  cn 8857  cz 9191  cuz 9466  +crp 9589  seqcseq 10380  cexp 10454  abscabs 10939  cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  cvgratgt0  11474
  Copyright terms: Public domain W3C validator