ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratz GIF version

Theorem cvgratz 11678
Description: Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
Hypotheses
Ref Expression
cvgratz.1 𝑍 = (ℤ𝑀)
cvgratz.m (𝜑𝑀 ∈ ℤ)
cvgratz.3 (𝜑𝐴 ∈ ℝ)
cvgratz.4 (𝜑𝐴 < 1)
cvgratz.gt0 (𝜑 → 0 < 𝐴)
cvgratz.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
cvgratz.7 ((𝜑𝑘𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
Assertion
Ref Expression
cvgratz (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘

Proof of Theorem cvgratz
Dummy variables 𝑖 𝑥 𝑦 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratz.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21adantr 276 . . . 4 ((𝜑 ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℤ)
3 fveq2 5555 . . . . . 6 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
43eleq1d 2262 . . . . 5 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
5 cvgratz.6 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
65ralrimiva 2567 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
76ad2antrr 488 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
8 cvgratz.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
98eleq2i 2260 . . . . . . 7 (𝑥𝑍𝑥 ∈ (ℤ𝑀))
109biimpri 133 . . . . . 6 (𝑥 ∈ (ℤ𝑀) → 𝑥𝑍)
1110adantl 277 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥𝑍)
124, 7, 11rspcdva 2870 . . . 4 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
13 eluzelz 9604 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1413adantl 277 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℤ)
15 1red 8036 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
161zred 9442 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
1716ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
1814zred 9442 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℝ)
19 simplr 528 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 1 ≤ 𝑀)
20 eluzle 9607 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑀𝑘)
2120adantl 277 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑀𝑘)
2215, 17, 18, 19, 21letrd 8145 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 1 ≤ 𝑘)
23 elnnz1 9343 . . . . . . 7 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
2414, 22, 23sylanbrc 417 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
25 elnnuz 9632 . . . . . . . 8 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
26 fveq2 5555 . . . . . . . . . . . . 13 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2726eleq1d 2262 . . . . . . . . . . . 12 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
28 uzid 9609 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
291, 28syl 14 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ𝑀))
3029, 8eleqtrrdi 2287 . . . . . . . . . . . 12 (𝜑𝑀𝑍)
3127, 6, 30rspcdva 2870 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) ∈ ℂ)
3231ad3antrrr 492 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐹𝑀) ∈ ℂ)
33 cvgratz.3 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
34 cvgratz.gt0 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐴)
3533, 34elrpd 9762 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ+)
3635ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → 𝐴 ∈ ℝ+)
372adantr 276 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑀 ∈ ℤ)
3837adantr 276 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → 𝑀 ∈ ℤ)
3925biimpri 133 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ)
4039adantl 277 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
4140nnzd 9441 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℤ)
4241adantr 276 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → 𝑘 ∈ ℤ)
4338, 42zsubcld 9447 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝑀𝑘) ∈ ℤ)
4436, 43rpexpcld 10771 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐴↑(𝑀𝑘)) ∈ ℝ+)
4544rpcnd 9767 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐴↑(𝑀𝑘)) ∈ ℂ)
4644rpap0d 9771 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐴↑(𝑀𝑘)) # 0)
4732, 45, 46divclapd 8811 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀𝑘))) ∈ ℂ)
48 simplll 533 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝜑)
4937adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑀 ∈ ℤ)
5041adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘 ∈ ℤ)
5116ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑀 ∈ ℝ)
5250zred 9442 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘 ∈ ℝ)
53 simpr 110 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → ¬ 𝑘 < 𝑀)
5451, 52, 53nltled 8142 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑀𝑘)
55 eluz2 9601 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘))
5649, 50, 54, 55syl3anbrc 1183 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘 ∈ (ℤ𝑀))
5756, 8eleqtrrdi 2287 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘𝑍)
5848, 57, 5syl2anc 411 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → (𝐹𝑘) ∈ ℂ)
59 zdclt 9397 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑘 < 𝑀)
6041, 37, 59syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → DECID 𝑘 < 𝑀)
6147, 58, 60ifcldadc 3587 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ)
6225, 61sylan2b 287 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ)
6324, 62syldan 282 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ)
64 breq1 4033 . . . . . . . 8 (𝑖 = 𝑘 → (𝑖 < 𝑀𝑘 < 𝑀))
65 oveq2 5927 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑀𝑖) = (𝑀𝑘))
6665oveq2d 5935 . . . . . . . . 9 (𝑖 = 𝑘 → (𝐴↑(𝑀𝑖)) = (𝐴↑(𝑀𝑘)))
6766oveq2d 5935 . . . . . . . 8 (𝑖 = 𝑘 → ((𝐹𝑀) / (𝐴↑(𝑀𝑖))) = ((𝐹𝑀) / (𝐴↑(𝑀𝑘))))
68 fveq2 5555 . . . . . . . 8 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
6964, 67, 68ifbieq12d 3584 . . . . . . 7 (𝑖 = 𝑘 → if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
70 eqid 2193 . . . . . . 7 (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖))) = (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))
7169, 70fvmptg 5634 . . . . . 6 ((𝑘 ∈ ℕ ∧ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
7224, 63, 71syl2anc 411 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
7317, 18, 21lensymd 8143 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → ¬ 𝑘 < 𝑀)
7473iffalsed 3568 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = (𝐹𝑘))
7572, 74eqtr2d 2227 . . . 4 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘))
76 addcl 7999 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
7776adantl 277 . . . 4 (((𝜑 ∧ 1 ≤ 𝑀) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
782, 12, 75, 77seq3feq 10554 . . 3 ((𝜑 ∧ 1 ≤ 𝑀) → seq𝑀( + , 𝐹) = seq𝑀( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))))
7933adantr 276 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 𝐴 ∈ ℝ)
80 cvgratz.4 . . . . . 6 (𝜑𝐴 < 1)
8180adantr 276 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 𝐴 < 1)
8234adantr 276 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 0 < 𝐴)
8371eleq1d 2262 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ) → (((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ ↔ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ))
8440, 61, 83syl2anc 411 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → (((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ ↔ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ))
8561, 84mpbird 167 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ)
8625, 85sylan2b 287 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ)
8731ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐹𝑀) ∈ ℂ)
8835ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝐴 ∈ ℝ+)
892ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℤ)
9025, 41sylan2b 287 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
9190adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 ∈ ℤ)
9291peano2zd 9445 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℤ)
9389, 92zsubcld 9447 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑀 − (𝑘 + 1)) ∈ ℤ)
9488, 93rpexpcld 10771 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴↑(𝑀 − (𝑘 + 1))) ∈ ℝ+)
9594rpcnd 9767 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴↑(𝑀 − (𝑘 + 1))) ∈ ℂ)
9694rpap0d 9771 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴↑(𝑀 − (𝑘 + 1))) # 0)
9787, 95, 96divclapd 8811 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))) ∈ ℂ)
98 fveq2 5555 . . . . . . . . . . . 12 (𝑎 = (𝑘 + 1) → (𝐹𝑎) = (𝐹‘(𝑘 + 1)))
9998eleq1d 2262 . . . . . . . . . . 11 (𝑎 = (𝑘 + 1) → ((𝐹𝑎) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
100 fveq2 5555 . . . . . . . . . . . . . . 15 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
101100eleq1d 2262 . . . . . . . . . . . . . 14 (𝑘 = 𝑎 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑎) ∈ ℂ))
102101cbvralv 2726 . . . . . . . . . . . . 13 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑎𝑍 (𝐹𝑎) ∈ ℂ)
1036, 102sylib 122 . . . . . . . . . . . 12 (𝜑 → ∀𝑎𝑍 (𝐹𝑎) ∈ ℂ)
104103ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → ∀𝑎𝑍 (𝐹𝑎) ∈ ℂ)
1052ad2antrr 488 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℤ)
106 peano2nn 8996 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
107106adantl 277 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
108107nnzd 9441 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℤ)
109108adantr 276 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℤ)
11016ad3antrrr 492 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℝ)
111107nnred 8997 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
112111adantr 276 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℝ)
113 simpr 110 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → ¬ (𝑘 + 1) < 𝑀)
114110, 112, 113nltled 8142 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → 𝑀 ≤ (𝑘 + 1))
115 eluz2 9601 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑘 + 1)))
116105, 109, 114, 115syl3anbrc 1183 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ (ℤ𝑀))
117116, 8eleqtrrdi 2287 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ 𝑍)
11899, 104, 117rspcdva 2870 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
1192adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℤ)
120 zdclt 9397 . . . . . . . . . . 11 (((𝑘 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID (𝑘 + 1) < 𝑀)
121108, 119, 120syl2anc 411 . . . . . . . . . 10 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → DECID (𝑘 + 1) < 𝑀)
12297, 118, 121ifcldadc 3587 . . . . . . . . 9 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) ∈ ℂ)
123122abscld 11328 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ∈ ℝ)
12416recnd 8050 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℂ)
125124ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℂ)
126 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
127126nncnd 8998 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
128 1cnd 8037 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
129125, 127, 128subsub4d 8363 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑀𝑘) − 1) = (𝑀 − (𝑘 + 1)))
130129oveq2d 5935 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑((𝑀𝑘) − 1)) = (𝐴↑(𝑀 − (𝑘 + 1))))
13133recnd 8050 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
132131ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
13333, 34gt0ap0d 8650 . . . . . . . . . . . . . . . 16 (𝜑𝐴 # 0)
134133ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝐴 # 0)
135119, 90zsubcld 9447 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑀𝑘) ∈ ℤ)
136132, 134, 135expm1apd 10757 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑((𝑀𝑘) − 1)) = ((𝐴↑(𝑀𝑘)) / 𝐴))
137130, 136eqtr3d 2228 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑀 − (𝑘 + 1))) = ((𝐴↑(𝑀𝑘)) / 𝐴))
138137oveq2d 5935 . . . . . . . . . . . 12 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))) = ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)))
139138adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))) = ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)))
140 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑘 + 1) < 𝑀)
141140iftrued 3565 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))))
142126nnred 8997 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
143142adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 ∈ ℝ)
144 peano2re 8157 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
145143, 144syl 14 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℝ)
14616ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℝ)
147143ltp1d 8951 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 < (𝑘 + 1))
148143, 145, 146, 147, 140lttrd 8147 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 < 𝑀)
149148iftrued 3565 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = ((𝐹𝑀) / (𝐴↑(𝑀𝑘))))
150149oveq2d 5935 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
15131ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐹𝑀) ∈ ℂ)
152132, 134, 135expclzapd 10752 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑀𝑘)) ∈ ℂ)
153132, 134, 135expap0d 10753 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑀𝑘)) # 0)
154151, 152, 132, 153, 134divdivap2d 8844 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)) = (((𝐹𝑀) · 𝐴) / (𝐴↑(𝑀𝑘))))
155151, 132mulcomd 8043 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) · 𝐴) = (𝐴 · (𝐹𝑀)))
156155oveq1d 5934 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑀) · 𝐴) / (𝐴↑(𝑀𝑘))) = ((𝐴 · (𝐹𝑀)) / (𝐴↑(𝑀𝑘))))
157132, 151, 152, 153divassapd 8847 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐴 · (𝐹𝑀)) / (𝐴↑(𝑀𝑘))) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
158154, 156, 1573eqtrd 2230 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
159158adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
160150, 159eqtr4d 2229 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)))
161139, 141, 1603eqtr4d 2236 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))))
162161fveq2d 5559 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
163132, 62absmuld 11341 . . . . . . . . . 10 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
164163adantr 276 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
16535rpge0d 9769 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝐴)
16633, 165absidd 11314 . . . . . . . . . . 11 (𝜑 → (abs‘𝐴) = 𝐴)
167166oveq1d 5934 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
168167ad3antrrr 492 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
169162, 164, 1683eqtrd 2230 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
170 eqle 8113 . . . . . . . 8 (((abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ∈ ℝ ∧ (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))))) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
171123, 169, 170syl2an2r 595 . . . . . . 7 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
17216ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℝ)
173111, 172lttri3d 8136 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) = 𝑀 ↔ (¬ (𝑘 + 1) < 𝑀 ∧ ¬ 𝑀 < (𝑘 + 1))))
174173simprbda 383 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ¬ (𝑘 + 1) < 𝑀)
175174iffalsed 3568 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
176 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝑘 + 1) = 𝑀)
177176fveq2d 5559 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐹‘(𝑘 + 1)) = (𝐹𝑀))
178175, 177eqtrd 2226 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐹𝑀))
179178fveq2d 5559 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (abs‘(𝐹𝑀)))
180142adantr 276 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 ∈ ℝ)
181180ltp1d 8951 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 < (𝑘 + 1))
182 breq2 4034 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) = 𝑀 → (𝑘 < (𝑘 + 1) ↔ 𝑘 < 𝑀))
183182adantl 277 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝑘 < (𝑘 + 1) ↔ 𝑘 < 𝑀))
184181, 183mpbid 147 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 < 𝑀)
185184iftrued 3565 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = ((𝐹𝑀) / (𝐴↑(𝑀𝑘))))
186176oveq1d 5934 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ((𝑘 + 1) − 𝑘) = (𝑀𝑘))
187127adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 ∈ ℂ)
188 1cnd 8037 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 1 ∈ ℂ)
189187, 188pncan2d 8334 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ((𝑘 + 1) − 𝑘) = 1)
190186, 189eqtr3d 2228 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝑀𝑘) = 1)
191190oveq2d 5935 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴↑(𝑀𝑘)) = (𝐴↑1))
192132adantr 276 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝐴 ∈ ℂ)
193192exp1d 10742 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴↑1) = 𝐴)
194191, 193eqtrd 2226 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴↑(𝑀𝑘)) = 𝐴)
195194oveq2d 5935 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀𝑘))) = ((𝐹𝑀) / 𝐴))
196185, 195eqtrd 2226 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = ((𝐹𝑀) / 𝐴))
197196oveq2d 5935 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (𝐴 · ((𝐹𝑀) / 𝐴)))
19831, 131, 133divcanap2d 8813 . . . . . . . . . . . 12 (𝜑 → (𝐴 · ((𝐹𝑀) / 𝐴)) = (𝐹𝑀))
199198ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴 · ((𝐹𝑀) / 𝐴)) = (𝐹𝑀))
200197, 199eqtrd 2226 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (𝐹𝑀))
201200fveq2d 5559 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (abs‘(𝐹𝑀)))
202167ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
203163, 202eqtrd 2226 . . . . . . . . . 10 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
204203adantr 276 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
205179, 201, 2043eqtr2d 2232 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
206123, 205, 170syl2an2r 595 . . . . . . 7 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
207 simplll 533 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝜑)
208119adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀 ∈ ℤ)
20990adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘 ∈ ℤ)
210 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1))
211 zleltp1 9375 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀𝑘𝑀 < (𝑘 + 1)))
212119, 209, 211syl2an2r 595 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (𝑀𝑘𝑀 < (𝑘 + 1)))
213210, 212mpbird 167 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀𝑘)
214208, 209, 213, 55syl3anbrc 1183 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘 ∈ (ℤ𝑀))
215214, 8eleqtrrdi 2287 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘𝑍)
216 cvgratz.7 . . . . . . . . 9 ((𝜑𝑘𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
217207, 215, 216syl2anc 411 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
218172adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀 ∈ ℝ)
219111adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (𝑘 + 1) ∈ ℝ)
220218, 219, 210ltnsymd 8141 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → ¬ (𝑘 + 1) < 𝑀)
221220iffalsed 3568 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
222221fveq2d 5559 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (abs‘(𝐹‘(𝑘 + 1))))
223142adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘 ∈ ℝ)
224218, 223, 213lensymd 8143 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → ¬ 𝑘 < 𝑀)
225224iffalsed 3568 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = (𝐹𝑘))
226225fveq2d 5559 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (abs‘(𝐹𝑘)))
227226oveq2d 5935 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘(𝐹𝑘))))
228217, 222, 2273brtr4d 4062 . . . . . . 7 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
229 ztri3or 9363 . . . . . . . 8 (((𝑘 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑘 + 1) < 𝑀 ∨ (𝑘 + 1) = 𝑀𝑀 < (𝑘 + 1)))
230108, 119, 229syl2anc 411 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) < 𝑀 ∨ (𝑘 + 1) = 𝑀𝑀 < (𝑘 + 1)))
231171, 206, 228, 230mpjao3dan 1318 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
232 breq1 4033 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → (𝑖 < 𝑀 ↔ (𝑘 + 1) < 𝑀))
233 oveq2 5927 . . . . . . . . . . . 12 (𝑖 = (𝑘 + 1) → (𝑀𝑖) = (𝑀 − (𝑘 + 1)))
234233oveq2d 5935 . . . . . . . . . . 11 (𝑖 = (𝑘 + 1) → (𝐴↑(𝑀𝑖)) = (𝐴↑(𝑀 − (𝑘 + 1))))
235234oveq2d 5935 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → ((𝐹𝑀) / (𝐴↑(𝑀𝑖))) = ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))))
236 fveq2 5555 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
237232, 235, 236ifbieq12d 3584 . . . . . . . . 9 (𝑖 = (𝑘 + 1) → if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)) = if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))))
238237, 70fvmptg 5634 . . . . . . . 8 (((𝑘 + 1) ∈ ℕ ∧ if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) ∈ ℂ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1)) = if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))))
239107, 122, 238syl2anc 411 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1)) = if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))))
240239fveq2d 5559 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1))) = (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))))
241126, 62, 71syl2anc 411 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
242241fveq2d 5559 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘)) = (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))))
243242oveq2d 5935 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴 · (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
244231, 240, 2433brtr4d 4062 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1))) ≤ (𝐴 · (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘))))
24579, 81, 82, 86, 244cvgratnn 11677 . . . 4 ((𝜑 ∧ 1 ≤ 𝑀) → seq1( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ )
246 eqid 2193 . . . . 5 (ℤ‘1) = (ℤ‘1)
247 1zzd 9347 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝑀) → 1 ∈ ℤ)
248 simpr 110 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝑀) → 1 ≤ 𝑀)
249 eluz2 9601 . . . . . 6 (𝑀 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 1 ≤ 𝑀))
250247, 2, 248, 249syl3anbrc 1183 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 𝑀 ∈ (ℤ‘1))
251246, 250, 85iserex 11485 . . . 4 ((𝜑 ∧ 1 ≤ 𝑀) → (seq1( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ ))
252245, 251mpbid 147 . . 3 ((𝜑 ∧ 1 ≤ 𝑀) → seq𝑀( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ )
25378, 252eqeltrd 2270 . 2 ((𝜑 ∧ 1 ≤ 𝑀) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
25433adantr 276 . . . 4 ((𝜑𝑀 ≤ 1) → 𝐴 ∈ ℝ)
25580adantr 276 . . . 4 ((𝜑𝑀 ≤ 1) → 𝐴 < 1)
25634adantr 276 . . . 4 ((𝜑𝑀 ≤ 1) → 0 < 𝐴)
2571adantr 276 . . . . . . 7 ((𝜑𝑀 ≤ 1) → 𝑀 ∈ ℤ)
258257adantr 276 . . . . . 6 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℤ)
259 nnz 9339 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
260259adantl 277 . . . . . 6 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
261258zred 9442 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℝ)
262 1red 8036 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
263260zred 9442 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
264 simplr 528 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀 ≤ 1)
265 nnge1 9007 . . . . . . . 8 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
266265adantl 277 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑘)
267261, 262, 263, 264, 266letrd 8145 . . . . . 6 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀𝑘)
268258, 260, 267, 55syl3anbrc 1183 . . . . 5 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ𝑀))
2698eleq2i 2260 . . . . . . 7 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
270269, 5sylan2br 288 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
271270adantlr 477 . . . . 5 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
272268, 271syldan 282 . . . 4 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
273269, 216sylan2br 288 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
274273adantlr 477 . . . . 5 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
275268, 274syldan 282 . . . 4 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
276254, 255, 256, 272, 275cvgratnn 11677 . . 3 ((𝜑𝑀 ≤ 1) → seq1( + , 𝐹) ∈ dom ⇝ )
277 eqid 2193 . . . 4 (ℤ𝑀) = (ℤ𝑀)
278 1zzd 9347 . . . . 5 ((𝜑𝑀 ≤ 1) → 1 ∈ ℤ)
279 simpr 110 . . . . 5 ((𝜑𝑀 ≤ 1) → 𝑀 ≤ 1)
280 eluz2 9601 . . . . 5 (1 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑀 ≤ 1))
281257, 278, 279, 280syl3anbrc 1183 . . . 4 ((𝜑𝑀 ≤ 1) → 1 ∈ (ℤ𝑀))
282277, 281, 271iserex 11485 . . 3 ((𝜑𝑀 ≤ 1) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq1( + , 𝐹) ∈ dom ⇝ ))
283276, 282mpbird 167 . 2 ((𝜑𝑀 ≤ 1) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
284 1z 9346 . . 3 1 ∈ ℤ
285 zletric 9364 . . 3 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀𝑀 ≤ 1))
286284, 1, 285sylancr 414 . 2 (𝜑 → (1 ≤ 𝑀𝑀 ≤ 1))
287253, 283, 286mpjaodan 799 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3o 979   = wceq 1364  wcel 2164  wral 2472  ifcif 3558   class class class wbr 4030  cmpt 4091  dom cdm 4660  cfv 5255  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879   < clt 8056  cle 8057  cmin 8192   # cap 8602   / cdiv 8693  cn 8984  cz 9320  cuz 9595  +crp 9722  seqcseq 10521  cexp 10612  abscabs 11144  cli 11424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-ico 9963  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  cvgratgt0  11679
  Copyright terms: Public domain W3C validator