ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratz GIF version

Theorem cvgratz 11716
Description: Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
Hypotheses
Ref Expression
cvgratz.1 𝑍 = (ℤ𝑀)
cvgratz.m (𝜑𝑀 ∈ ℤ)
cvgratz.3 (𝜑𝐴 ∈ ℝ)
cvgratz.4 (𝜑𝐴 < 1)
cvgratz.gt0 (𝜑 → 0 < 𝐴)
cvgratz.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
cvgratz.7 ((𝜑𝑘𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
Assertion
Ref Expression
cvgratz (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘

Proof of Theorem cvgratz
Dummy variables 𝑖 𝑥 𝑦 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratz.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21adantr 276 . . . 4 ((𝜑 ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℤ)
3 fveq2 5561 . . . . . 6 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
43eleq1d 2265 . . . . 5 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
5 cvgratz.6 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
65ralrimiva 2570 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
76ad2antrr 488 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
8 cvgratz.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
98eleq2i 2263 . . . . . . 7 (𝑥𝑍𝑥 ∈ (ℤ𝑀))
109biimpri 133 . . . . . 6 (𝑥 ∈ (ℤ𝑀) → 𝑥𝑍)
1110adantl 277 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥𝑍)
124, 7, 11rspcdva 2873 . . . 4 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
13 eluzelz 9629 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1413adantl 277 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℤ)
15 1red 8060 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
161zred 9467 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
1716ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
1814zred 9467 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℝ)
19 simplr 528 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 1 ≤ 𝑀)
20 eluzle 9632 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑀𝑘)
2120adantl 277 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑀𝑘)
2215, 17, 18, 19, 21letrd 8169 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 1 ≤ 𝑘)
23 elnnz1 9368 . . . . . . 7 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
2414, 22, 23sylanbrc 417 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
25 elnnuz 9657 . . . . . . . 8 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
26 fveq2 5561 . . . . . . . . . . . . 13 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2726eleq1d 2265 . . . . . . . . . . . 12 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
28 uzid 9634 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
291, 28syl 14 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ𝑀))
3029, 8eleqtrrdi 2290 . . . . . . . . . . . 12 (𝜑𝑀𝑍)
3127, 6, 30rspcdva 2873 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) ∈ ℂ)
3231ad3antrrr 492 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐹𝑀) ∈ ℂ)
33 cvgratz.3 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
34 cvgratz.gt0 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐴)
3533, 34elrpd 9787 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ+)
3635ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → 𝐴 ∈ ℝ+)
372adantr 276 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑀 ∈ ℤ)
3837adantr 276 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → 𝑀 ∈ ℤ)
3925biimpri 133 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ)
4039adantl 277 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
4140nnzd 9466 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℤ)
4241adantr 276 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → 𝑘 ∈ ℤ)
4338, 42zsubcld 9472 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝑀𝑘) ∈ ℤ)
4436, 43rpexpcld 10808 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐴↑(𝑀𝑘)) ∈ ℝ+)
4544rpcnd 9792 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐴↑(𝑀𝑘)) ∈ ℂ)
4644rpap0d 9796 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐴↑(𝑀𝑘)) # 0)
4732, 45, 46divclapd 8836 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀𝑘))) ∈ ℂ)
48 simplll 533 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝜑)
4937adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑀 ∈ ℤ)
5041adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘 ∈ ℤ)
5116ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑀 ∈ ℝ)
5250zred 9467 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘 ∈ ℝ)
53 simpr 110 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → ¬ 𝑘 < 𝑀)
5451, 52, 53nltled 8166 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑀𝑘)
55 eluz2 9626 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘))
5649, 50, 54, 55syl3anbrc 1183 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘 ∈ (ℤ𝑀))
5756, 8eleqtrrdi 2290 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘𝑍)
5848, 57, 5syl2anc 411 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → (𝐹𝑘) ∈ ℂ)
59 zdclt 9422 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑘 < 𝑀)
6041, 37, 59syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → DECID 𝑘 < 𝑀)
6147, 58, 60ifcldadc 3591 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ)
6225, 61sylan2b 287 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ)
6324, 62syldan 282 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ)
64 breq1 4037 . . . . . . . 8 (𝑖 = 𝑘 → (𝑖 < 𝑀𝑘 < 𝑀))
65 oveq2 5933 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑀𝑖) = (𝑀𝑘))
6665oveq2d 5941 . . . . . . . . 9 (𝑖 = 𝑘 → (𝐴↑(𝑀𝑖)) = (𝐴↑(𝑀𝑘)))
6766oveq2d 5941 . . . . . . . 8 (𝑖 = 𝑘 → ((𝐹𝑀) / (𝐴↑(𝑀𝑖))) = ((𝐹𝑀) / (𝐴↑(𝑀𝑘))))
68 fveq2 5561 . . . . . . . 8 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
6964, 67, 68ifbieq12d 3588 . . . . . . 7 (𝑖 = 𝑘 → if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
70 eqid 2196 . . . . . . 7 (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖))) = (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))
7169, 70fvmptg 5640 . . . . . 6 ((𝑘 ∈ ℕ ∧ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
7224, 63, 71syl2anc 411 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
7317, 18, 21lensymd 8167 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → ¬ 𝑘 < 𝑀)
7473iffalsed 3572 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = (𝐹𝑘))
7572, 74eqtr2d 2230 . . . 4 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘))
76 addcl 8023 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
7776adantl 277 . . . 4 (((𝜑 ∧ 1 ≤ 𝑀) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
782, 12, 75, 77seq3feq 10591 . . 3 ((𝜑 ∧ 1 ≤ 𝑀) → seq𝑀( + , 𝐹) = seq𝑀( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))))
7933adantr 276 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 𝐴 ∈ ℝ)
80 cvgratz.4 . . . . . 6 (𝜑𝐴 < 1)
8180adantr 276 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 𝐴 < 1)
8234adantr 276 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 0 < 𝐴)
8371eleq1d 2265 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ) → (((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ ↔ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ))
8440, 61, 83syl2anc 411 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → (((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ ↔ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ))
8561, 84mpbird 167 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ)
8625, 85sylan2b 287 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ)
8731ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐹𝑀) ∈ ℂ)
8835ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝐴 ∈ ℝ+)
892ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℤ)
9025, 41sylan2b 287 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
9190adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 ∈ ℤ)
9291peano2zd 9470 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℤ)
9389, 92zsubcld 9472 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑀 − (𝑘 + 1)) ∈ ℤ)
9488, 93rpexpcld 10808 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴↑(𝑀 − (𝑘 + 1))) ∈ ℝ+)
9594rpcnd 9792 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴↑(𝑀 − (𝑘 + 1))) ∈ ℂ)
9694rpap0d 9796 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴↑(𝑀 − (𝑘 + 1))) # 0)
9787, 95, 96divclapd 8836 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))) ∈ ℂ)
98 fveq2 5561 . . . . . . . . . . . 12 (𝑎 = (𝑘 + 1) → (𝐹𝑎) = (𝐹‘(𝑘 + 1)))
9998eleq1d 2265 . . . . . . . . . . 11 (𝑎 = (𝑘 + 1) → ((𝐹𝑎) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
100 fveq2 5561 . . . . . . . . . . . . . . 15 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
101100eleq1d 2265 . . . . . . . . . . . . . 14 (𝑘 = 𝑎 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑎) ∈ ℂ))
102101cbvralv 2729 . . . . . . . . . . . . 13 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑎𝑍 (𝐹𝑎) ∈ ℂ)
1036, 102sylib 122 . . . . . . . . . . . 12 (𝜑 → ∀𝑎𝑍 (𝐹𝑎) ∈ ℂ)
104103ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → ∀𝑎𝑍 (𝐹𝑎) ∈ ℂ)
1052ad2antrr 488 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℤ)
106 peano2nn 9021 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
107106adantl 277 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
108107nnzd 9466 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℤ)
109108adantr 276 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℤ)
11016ad3antrrr 492 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℝ)
111107nnred 9022 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
112111adantr 276 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℝ)
113 simpr 110 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → ¬ (𝑘 + 1) < 𝑀)
114110, 112, 113nltled 8166 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → 𝑀 ≤ (𝑘 + 1))
115 eluz2 9626 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑘 + 1)))
116105, 109, 114, 115syl3anbrc 1183 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ (ℤ𝑀))
117116, 8eleqtrrdi 2290 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ 𝑍)
11899, 104, 117rspcdva 2873 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
1192adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℤ)
120 zdclt 9422 . . . . . . . . . . 11 (((𝑘 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID (𝑘 + 1) < 𝑀)
121108, 119, 120syl2anc 411 . . . . . . . . . 10 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → DECID (𝑘 + 1) < 𝑀)
12297, 118, 121ifcldadc 3591 . . . . . . . . 9 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) ∈ ℂ)
123122abscld 11365 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ∈ ℝ)
12416recnd 8074 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℂ)
125124ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℂ)
126 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
127126nncnd 9023 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
128 1cnd 8061 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
129125, 127, 128subsub4d 8387 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑀𝑘) − 1) = (𝑀 − (𝑘 + 1)))
130129oveq2d 5941 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑((𝑀𝑘) − 1)) = (𝐴↑(𝑀 − (𝑘 + 1))))
13133recnd 8074 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
132131ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
13333, 34gt0ap0d 8675 . . . . . . . . . . . . . . . 16 (𝜑𝐴 # 0)
134133ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝐴 # 0)
135119, 90zsubcld 9472 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑀𝑘) ∈ ℤ)
136132, 134, 135expm1apd 10794 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑((𝑀𝑘) − 1)) = ((𝐴↑(𝑀𝑘)) / 𝐴))
137130, 136eqtr3d 2231 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑀 − (𝑘 + 1))) = ((𝐴↑(𝑀𝑘)) / 𝐴))
138137oveq2d 5941 . . . . . . . . . . . 12 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))) = ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)))
139138adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))) = ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)))
140 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑘 + 1) < 𝑀)
141140iftrued 3569 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))))
142126nnred 9022 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
143142adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 ∈ ℝ)
144 peano2re 8181 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
145143, 144syl 14 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℝ)
14616ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℝ)
147143ltp1d 8976 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 < (𝑘 + 1))
148143, 145, 146, 147, 140lttrd 8171 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 < 𝑀)
149148iftrued 3569 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = ((𝐹𝑀) / (𝐴↑(𝑀𝑘))))
150149oveq2d 5941 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
15131ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐹𝑀) ∈ ℂ)
152132, 134, 135expclzapd 10789 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑀𝑘)) ∈ ℂ)
153132, 134, 135expap0d 10790 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑀𝑘)) # 0)
154151, 152, 132, 153, 134divdivap2d 8869 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)) = (((𝐹𝑀) · 𝐴) / (𝐴↑(𝑀𝑘))))
155151, 132mulcomd 8067 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) · 𝐴) = (𝐴 · (𝐹𝑀)))
156155oveq1d 5940 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑀) · 𝐴) / (𝐴↑(𝑀𝑘))) = ((𝐴 · (𝐹𝑀)) / (𝐴↑(𝑀𝑘))))
157132, 151, 152, 153divassapd 8872 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐴 · (𝐹𝑀)) / (𝐴↑(𝑀𝑘))) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
158154, 156, 1573eqtrd 2233 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
159158adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
160150, 159eqtr4d 2232 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)))
161139, 141, 1603eqtr4d 2239 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))))
162161fveq2d 5565 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
163132, 62absmuld 11378 . . . . . . . . . 10 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
164163adantr 276 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
16535rpge0d 9794 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝐴)
16633, 165absidd 11351 . . . . . . . . . . 11 (𝜑 → (abs‘𝐴) = 𝐴)
167166oveq1d 5940 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
168167ad3antrrr 492 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
169162, 164, 1683eqtrd 2233 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
170 eqle 8137 . . . . . . . 8 (((abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ∈ ℝ ∧ (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))))) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
171123, 169, 170syl2an2r 595 . . . . . . 7 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
17216ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℝ)
173111, 172lttri3d 8160 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) = 𝑀 ↔ (¬ (𝑘 + 1) < 𝑀 ∧ ¬ 𝑀 < (𝑘 + 1))))
174173simprbda 383 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ¬ (𝑘 + 1) < 𝑀)
175174iffalsed 3572 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
176 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝑘 + 1) = 𝑀)
177176fveq2d 5565 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐹‘(𝑘 + 1)) = (𝐹𝑀))
178175, 177eqtrd 2229 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐹𝑀))
179178fveq2d 5565 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (abs‘(𝐹𝑀)))
180142adantr 276 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 ∈ ℝ)
181180ltp1d 8976 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 < (𝑘 + 1))
182 breq2 4038 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) = 𝑀 → (𝑘 < (𝑘 + 1) ↔ 𝑘 < 𝑀))
183182adantl 277 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝑘 < (𝑘 + 1) ↔ 𝑘 < 𝑀))
184181, 183mpbid 147 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 < 𝑀)
185184iftrued 3569 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = ((𝐹𝑀) / (𝐴↑(𝑀𝑘))))
186176oveq1d 5940 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ((𝑘 + 1) − 𝑘) = (𝑀𝑘))
187127adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 ∈ ℂ)
188 1cnd 8061 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 1 ∈ ℂ)
189187, 188pncan2d 8358 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ((𝑘 + 1) − 𝑘) = 1)
190186, 189eqtr3d 2231 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝑀𝑘) = 1)
191190oveq2d 5941 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴↑(𝑀𝑘)) = (𝐴↑1))
192132adantr 276 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝐴 ∈ ℂ)
193192exp1d 10779 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴↑1) = 𝐴)
194191, 193eqtrd 2229 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴↑(𝑀𝑘)) = 𝐴)
195194oveq2d 5941 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀𝑘))) = ((𝐹𝑀) / 𝐴))
196185, 195eqtrd 2229 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = ((𝐹𝑀) / 𝐴))
197196oveq2d 5941 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (𝐴 · ((𝐹𝑀) / 𝐴)))
19831, 131, 133divcanap2d 8838 . . . . . . . . . . . 12 (𝜑 → (𝐴 · ((𝐹𝑀) / 𝐴)) = (𝐹𝑀))
199198ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴 · ((𝐹𝑀) / 𝐴)) = (𝐹𝑀))
200197, 199eqtrd 2229 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (𝐹𝑀))
201200fveq2d 5565 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (abs‘(𝐹𝑀)))
202167ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
203163, 202eqtrd 2229 . . . . . . . . . 10 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
204203adantr 276 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
205179, 201, 2043eqtr2d 2235 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
206123, 205, 170syl2an2r 595 . . . . . . 7 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
207 simplll 533 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝜑)
208119adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀 ∈ ℤ)
20990adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘 ∈ ℤ)
210 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1))
211 zleltp1 9400 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀𝑘𝑀 < (𝑘 + 1)))
212119, 209, 211syl2an2r 595 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (𝑀𝑘𝑀 < (𝑘 + 1)))
213210, 212mpbird 167 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀𝑘)
214208, 209, 213, 55syl3anbrc 1183 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘 ∈ (ℤ𝑀))
215214, 8eleqtrrdi 2290 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘𝑍)
216 cvgratz.7 . . . . . . . . 9 ((𝜑𝑘𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
217207, 215, 216syl2anc 411 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
218172adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀 ∈ ℝ)
219111adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (𝑘 + 1) ∈ ℝ)
220218, 219, 210ltnsymd 8165 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → ¬ (𝑘 + 1) < 𝑀)
221220iffalsed 3572 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
222221fveq2d 5565 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (abs‘(𝐹‘(𝑘 + 1))))
223142adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘 ∈ ℝ)
224218, 223, 213lensymd 8167 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → ¬ 𝑘 < 𝑀)
225224iffalsed 3572 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = (𝐹𝑘))
226225fveq2d 5565 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (abs‘(𝐹𝑘)))
227226oveq2d 5941 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘(𝐹𝑘))))
228217, 222, 2273brtr4d 4066 . . . . . . 7 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
229 ztri3or 9388 . . . . . . . 8 (((𝑘 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑘 + 1) < 𝑀 ∨ (𝑘 + 1) = 𝑀𝑀 < (𝑘 + 1)))
230108, 119, 229syl2anc 411 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) < 𝑀 ∨ (𝑘 + 1) = 𝑀𝑀 < (𝑘 + 1)))
231171, 206, 228, 230mpjao3dan 1318 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
232 breq1 4037 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → (𝑖 < 𝑀 ↔ (𝑘 + 1) < 𝑀))
233 oveq2 5933 . . . . . . . . . . . 12 (𝑖 = (𝑘 + 1) → (𝑀𝑖) = (𝑀 − (𝑘 + 1)))
234233oveq2d 5941 . . . . . . . . . . 11 (𝑖 = (𝑘 + 1) → (𝐴↑(𝑀𝑖)) = (𝐴↑(𝑀 − (𝑘 + 1))))
235234oveq2d 5941 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → ((𝐹𝑀) / (𝐴↑(𝑀𝑖))) = ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))))
236 fveq2 5561 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
237232, 235, 236ifbieq12d 3588 . . . . . . . . 9 (𝑖 = (𝑘 + 1) → if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)) = if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))))
238237, 70fvmptg 5640 . . . . . . . 8 (((𝑘 + 1) ∈ ℕ ∧ if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) ∈ ℂ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1)) = if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))))
239107, 122, 238syl2anc 411 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1)) = if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))))
240239fveq2d 5565 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1))) = (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))))
241126, 62, 71syl2anc 411 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
242241fveq2d 5565 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘)) = (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))))
243242oveq2d 5941 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴 · (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
244231, 240, 2433brtr4d 4066 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1))) ≤ (𝐴 · (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘))))
24579, 81, 82, 86, 244cvgratnn 11715 . . . 4 ((𝜑 ∧ 1 ≤ 𝑀) → seq1( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ )
246 eqid 2196 . . . . 5 (ℤ‘1) = (ℤ‘1)
247 1zzd 9372 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝑀) → 1 ∈ ℤ)
248 simpr 110 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝑀) → 1 ≤ 𝑀)
249 eluz2 9626 . . . . . 6 (𝑀 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 1 ≤ 𝑀))
250247, 2, 248, 249syl3anbrc 1183 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 𝑀 ∈ (ℤ‘1))
251246, 250, 85iserex 11523 . . . 4 ((𝜑 ∧ 1 ≤ 𝑀) → (seq1( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ ))
252245, 251mpbid 147 . . 3 ((𝜑 ∧ 1 ≤ 𝑀) → seq𝑀( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ )
25378, 252eqeltrd 2273 . 2 ((𝜑 ∧ 1 ≤ 𝑀) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
25433adantr 276 . . . 4 ((𝜑𝑀 ≤ 1) → 𝐴 ∈ ℝ)
25580adantr 276 . . . 4 ((𝜑𝑀 ≤ 1) → 𝐴 < 1)
25634adantr 276 . . . 4 ((𝜑𝑀 ≤ 1) → 0 < 𝐴)
2571adantr 276 . . . . . . 7 ((𝜑𝑀 ≤ 1) → 𝑀 ∈ ℤ)
258257adantr 276 . . . . . 6 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℤ)
259 nnz 9364 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
260259adantl 277 . . . . . 6 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
261258zred 9467 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℝ)
262 1red 8060 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
263260zred 9467 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
264 simplr 528 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀 ≤ 1)
265 nnge1 9032 . . . . . . . 8 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
266265adantl 277 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑘)
267261, 262, 263, 264, 266letrd 8169 . . . . . 6 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀𝑘)
268258, 260, 267, 55syl3anbrc 1183 . . . . 5 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ𝑀))
2698eleq2i 2263 . . . . . . 7 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
270269, 5sylan2br 288 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
271270adantlr 477 . . . . 5 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
272268, 271syldan 282 . . . 4 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
273269, 216sylan2br 288 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
274273adantlr 477 . . . . 5 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
275268, 274syldan 282 . . . 4 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
276254, 255, 256, 272, 275cvgratnn 11715 . . 3 ((𝜑𝑀 ≤ 1) → seq1( + , 𝐹) ∈ dom ⇝ )
277 eqid 2196 . . . 4 (ℤ𝑀) = (ℤ𝑀)
278 1zzd 9372 . . . . 5 ((𝜑𝑀 ≤ 1) → 1 ∈ ℤ)
279 simpr 110 . . . . 5 ((𝜑𝑀 ≤ 1) → 𝑀 ≤ 1)
280 eluz2 9626 . . . . 5 (1 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑀 ≤ 1))
281257, 278, 279, 280syl3anbrc 1183 . . . 4 ((𝜑𝑀 ≤ 1) → 1 ∈ (ℤ𝑀))
282277, 281, 271iserex 11523 . . 3 ((𝜑𝑀 ≤ 1) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq1( + , 𝐹) ∈ dom ⇝ ))
283276, 282mpbird 167 . 2 ((𝜑𝑀 ≤ 1) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
284 1z 9371 . . 3 1 ∈ ℤ
285 zletric 9389 . . 3 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀𝑀 ≤ 1))
286284, 1, 285sylancr 414 . 2 (𝜑 → (1 ≤ 𝑀𝑀 ≤ 1))
287253, 283, 286mpjaodan 799 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3o 979   = wceq 1364  wcel 2167  wral 2475  ifcif 3562   class class class wbr 4034  cmpt 4095  dom cdm 4664  cfv 5259  (class class class)co 5925  cc 7896  cr 7897  0cc0 7898  1c1 7899   + caddc 7901   · cmul 7903   < clt 8080  cle 8081  cmin 8216   # cap 8627   / cdiv 8718  cn 9009  cz 9345  cuz 9620  +crp 9747  seqcseq 10558  cexp 10649  abscabs 11181  cli 11462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-ico 9988  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538
This theorem is referenced by:  cvgratgt0  11717
  Copyright terms: Public domain W3C validator