ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratz GIF version

Theorem cvgratz 11887
Description: Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
Hypotheses
Ref Expression
cvgratz.1 𝑍 = (ℤ𝑀)
cvgratz.m (𝜑𝑀 ∈ ℤ)
cvgratz.3 (𝜑𝐴 ∈ ℝ)
cvgratz.4 (𝜑𝐴 < 1)
cvgratz.gt0 (𝜑 → 0 < 𝐴)
cvgratz.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
cvgratz.7 ((𝜑𝑘𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
Assertion
Ref Expression
cvgratz (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘

Proof of Theorem cvgratz
Dummy variables 𝑖 𝑥 𝑦 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratz.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21adantr 276 . . . 4 ((𝜑 ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℤ)
3 fveq2 5583 . . . . . 6 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
43eleq1d 2275 . . . . 5 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
5 cvgratz.6 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
65ralrimiva 2580 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
76ad2antrr 488 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
8 cvgratz.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
98eleq2i 2273 . . . . . . 7 (𝑥𝑍𝑥 ∈ (ℤ𝑀))
109biimpri 133 . . . . . 6 (𝑥 ∈ (ℤ𝑀) → 𝑥𝑍)
1110adantl 277 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥𝑍)
124, 7, 11rspcdva 2883 . . . 4 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
13 eluzelz 9664 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1413adantl 277 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℤ)
15 1red 8094 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
161zred 9502 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
1716ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
1814zred 9502 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℝ)
19 simplr 528 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 1 ≤ 𝑀)
20 eluzle 9667 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑀𝑘)
2120adantl 277 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑀𝑘)
2215, 17, 18, 19, 21letrd 8203 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 1 ≤ 𝑘)
23 elnnz1 9402 . . . . . . 7 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
2414, 22, 23sylanbrc 417 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
25 elnnuz 9692 . . . . . . . 8 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
26 fveq2 5583 . . . . . . . . . . . . 13 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2726eleq1d 2275 . . . . . . . . . . . 12 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
28 uzid 9669 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
291, 28syl 14 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ𝑀))
3029, 8eleqtrrdi 2300 . . . . . . . . . . . 12 (𝜑𝑀𝑍)
3127, 6, 30rspcdva 2883 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) ∈ ℂ)
3231ad3antrrr 492 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐹𝑀) ∈ ℂ)
33 cvgratz.3 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
34 cvgratz.gt0 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐴)
3533, 34elrpd 9822 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ+)
3635ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → 𝐴 ∈ ℝ+)
372adantr 276 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑀 ∈ ℤ)
3837adantr 276 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → 𝑀 ∈ ℤ)
3925biimpri 133 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ)
4039adantl 277 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
4140nnzd 9501 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℤ)
4241adantr 276 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → 𝑘 ∈ ℤ)
4338, 42zsubcld 9507 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝑀𝑘) ∈ ℤ)
4436, 43rpexpcld 10849 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐴↑(𝑀𝑘)) ∈ ℝ+)
4544rpcnd 9827 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐴↑(𝑀𝑘)) ∈ ℂ)
4644rpap0d 9831 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → (𝐴↑(𝑀𝑘)) # 0)
4732, 45, 46divclapd 8870 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 < 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀𝑘))) ∈ ℂ)
48 simplll 533 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝜑)
4937adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑀 ∈ ℤ)
5041adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘 ∈ ℤ)
5116ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑀 ∈ ℝ)
5250zred 9502 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘 ∈ ℝ)
53 simpr 110 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → ¬ 𝑘 < 𝑀)
5451, 52, 53nltled 8200 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑀𝑘)
55 eluz2 9661 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘))
5649, 50, 54, 55syl3anbrc 1184 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘 ∈ (ℤ𝑀))
5756, 8eleqtrrdi 2300 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → 𝑘𝑍)
5848, 57, 5syl2anc 411 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 < 𝑀) → (𝐹𝑘) ∈ ℂ)
59 zdclt 9457 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑘 < 𝑀)
6041, 37, 59syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → DECID 𝑘 < 𝑀)
6147, 58, 60ifcldadc 3601 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ)
6225, 61sylan2b 287 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ)
6324, 62syldan 282 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ)
64 breq1 4050 . . . . . . . 8 (𝑖 = 𝑘 → (𝑖 < 𝑀𝑘 < 𝑀))
65 oveq2 5959 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑀𝑖) = (𝑀𝑘))
6665oveq2d 5967 . . . . . . . . 9 (𝑖 = 𝑘 → (𝐴↑(𝑀𝑖)) = (𝐴↑(𝑀𝑘)))
6766oveq2d 5967 . . . . . . . 8 (𝑖 = 𝑘 → ((𝐹𝑀) / (𝐴↑(𝑀𝑖))) = ((𝐹𝑀) / (𝐴↑(𝑀𝑘))))
68 fveq2 5583 . . . . . . . 8 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
6964, 67, 68ifbieq12d 3598 . . . . . . 7 (𝑖 = 𝑘 → if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
70 eqid 2206 . . . . . . 7 (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖))) = (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))
7169, 70fvmptg 5662 . . . . . 6 ((𝑘 ∈ ℕ ∧ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
7224, 63, 71syl2anc 411 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
7317, 18, 21lensymd 8201 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → ¬ 𝑘 < 𝑀)
7473iffalsed 3582 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = (𝐹𝑘))
7572, 74eqtr2d 2240 . . . 4 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘))
76 addcl 8057 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
7776adantl 277 . . . 4 (((𝜑 ∧ 1 ≤ 𝑀) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
782, 12, 75, 77seq3feq 10632 . . 3 ((𝜑 ∧ 1 ≤ 𝑀) → seq𝑀( + , 𝐹) = seq𝑀( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))))
7933adantr 276 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 𝐴 ∈ ℝ)
80 cvgratz.4 . . . . . 6 (𝜑𝐴 < 1)
8180adantr 276 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 𝐴 < 1)
8234adantr 276 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 0 < 𝐴)
8371eleq1d 2275 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ) → (((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ ↔ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ))
8440, 61, 83syl2anc 411 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → (((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ ↔ if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) ∈ ℂ))
8561, 84mpbird 167 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ)
8625, 85sylan2b 287 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) ∈ ℂ)
8731ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐹𝑀) ∈ ℂ)
8835ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝐴 ∈ ℝ+)
892ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℤ)
9025, 41sylan2b 287 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
9190adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 ∈ ℤ)
9291peano2zd 9505 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℤ)
9389, 92zsubcld 9507 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑀 − (𝑘 + 1)) ∈ ℤ)
9488, 93rpexpcld 10849 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴↑(𝑀 − (𝑘 + 1))) ∈ ℝ+)
9594rpcnd 9827 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴↑(𝑀 − (𝑘 + 1))) ∈ ℂ)
9694rpap0d 9831 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴↑(𝑀 − (𝑘 + 1))) # 0)
9787, 95, 96divclapd 8870 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))) ∈ ℂ)
98 fveq2 5583 . . . . . . . . . . . 12 (𝑎 = (𝑘 + 1) → (𝐹𝑎) = (𝐹‘(𝑘 + 1)))
9998eleq1d 2275 . . . . . . . . . . 11 (𝑎 = (𝑘 + 1) → ((𝐹𝑎) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
100 fveq2 5583 . . . . . . . . . . . . . . 15 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
101100eleq1d 2275 . . . . . . . . . . . . . 14 (𝑘 = 𝑎 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑎) ∈ ℂ))
102101cbvralv 2739 . . . . . . . . . . . . 13 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑎𝑍 (𝐹𝑎) ∈ ℂ)
1036, 102sylib 122 . . . . . . . . . . . 12 (𝜑 → ∀𝑎𝑍 (𝐹𝑎) ∈ ℂ)
104103ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → ∀𝑎𝑍 (𝐹𝑎) ∈ ℂ)
1052ad2antrr 488 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℤ)
106 peano2nn 9055 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
107106adantl 277 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
108107nnzd 9501 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℤ)
109108adantr 276 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℤ)
11016ad3antrrr 492 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℝ)
111107nnred 9056 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
112111adantr 276 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℝ)
113 simpr 110 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → ¬ (𝑘 + 1) < 𝑀)
114110, 112, 113nltled 8200 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → 𝑀 ≤ (𝑘 + 1))
115 eluz2 9661 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑘 + 1)))
116105, 109, 114, 115syl3anbrc 1184 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ (ℤ𝑀))
117116, 8eleqtrrdi 2300 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ 𝑍)
11899, 104, 117rspcdva 2883 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) < 𝑀) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
1192adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℤ)
120 zdclt 9457 . . . . . . . . . . 11 (((𝑘 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID (𝑘 + 1) < 𝑀)
121108, 119, 120syl2anc 411 . . . . . . . . . 10 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → DECID (𝑘 + 1) < 𝑀)
12297, 118, 121ifcldadc 3601 . . . . . . . . 9 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) ∈ ℂ)
123122abscld 11536 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ∈ ℝ)
12416recnd 8108 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℂ)
125124ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℂ)
126 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
127126nncnd 9057 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
128 1cnd 8095 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
129125, 127, 128subsub4d 8421 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑀𝑘) − 1) = (𝑀 − (𝑘 + 1)))
130129oveq2d 5967 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑((𝑀𝑘) − 1)) = (𝐴↑(𝑀 − (𝑘 + 1))))
13133recnd 8108 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
132131ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
13333, 34gt0ap0d 8709 . . . . . . . . . . . . . . . 16 (𝜑𝐴 # 0)
134133ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝐴 # 0)
135119, 90zsubcld 9507 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝑀𝑘) ∈ ℤ)
136132, 134, 135expm1apd 10835 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑((𝑀𝑘) − 1)) = ((𝐴↑(𝑀𝑘)) / 𝐴))
137130, 136eqtr3d 2241 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑀 − (𝑘 + 1))) = ((𝐴↑(𝑀𝑘)) / 𝐴))
138137oveq2d 5967 . . . . . . . . . . . 12 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))) = ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)))
139138adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))) = ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)))
140 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑘 + 1) < 𝑀)
141140iftrued 3579 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))))
142126nnred 9056 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
143142adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 ∈ ℝ)
144 peano2re 8215 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
145143, 144syl 14 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝑘 + 1) ∈ ℝ)
14616ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑀 ∈ ℝ)
147143ltp1d 9010 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 < (𝑘 + 1))
148143, 145, 146, 147, 140lttrd 8205 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → 𝑘 < 𝑀)
149148iftrued 3579 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = ((𝐹𝑀) / (𝐴↑(𝑀𝑘))))
150149oveq2d 5967 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
15131ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐹𝑀) ∈ ℂ)
152132, 134, 135expclzapd 10830 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑀𝑘)) ∈ ℂ)
153132, 134, 135expap0d 10831 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑀𝑘)) # 0)
154151, 152, 132, 153, 134divdivap2d 8903 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)) = (((𝐹𝑀) · 𝐴) / (𝐴↑(𝑀𝑘))))
155151, 132mulcomd 8101 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) · 𝐴) = (𝐴 · (𝐹𝑀)))
156155oveq1d 5966 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑀) · 𝐴) / (𝐴↑(𝑀𝑘))) = ((𝐴 · (𝐹𝑀)) / (𝐴↑(𝑀𝑘))))
157132, 151, 152, 153divassapd 8906 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐴 · (𝐹𝑀)) / (𝐴↑(𝑀𝑘))) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
158154, 156, 1573eqtrd 2243 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
159158adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)) = (𝐴 · ((𝐹𝑀) / (𝐴↑(𝑀𝑘)))))
160150, 159eqtr4d 2242 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = ((𝐹𝑀) / ((𝐴↑(𝑀𝑘)) / 𝐴)))
161139, 141, 1603eqtr4d 2249 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))))
162161fveq2d 5587 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
163132, 62absmuld 11549 . . . . . . . . . 10 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
164163adantr 276 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
16535rpge0d 9829 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝐴)
16633, 165absidd 11522 . . . . . . . . . . 11 (𝜑 → (abs‘𝐴) = 𝐴)
167166oveq1d 5966 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
168167ad3antrrr 492 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
169162, 164, 1683eqtrd 2243 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
170 eqle 8171 . . . . . . . 8 (((abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ∈ ℝ ∧ (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))))) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
171123, 169, 170syl2an2r 595 . . . . . . 7 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) < 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
17216ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℝ)
173111, 172lttri3d 8194 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) = 𝑀 ↔ (¬ (𝑘 + 1) < 𝑀 ∧ ¬ 𝑀 < (𝑘 + 1))))
174173simprbda 383 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ¬ (𝑘 + 1) < 𝑀)
175174iffalsed 3582 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
176 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝑘 + 1) = 𝑀)
177176fveq2d 5587 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐹‘(𝑘 + 1)) = (𝐹𝑀))
178175, 177eqtrd 2239 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐹𝑀))
179178fveq2d 5587 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (abs‘(𝐹𝑀)))
180142adantr 276 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 ∈ ℝ)
181180ltp1d 9010 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 < (𝑘 + 1))
182 breq2 4051 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) = 𝑀 → (𝑘 < (𝑘 + 1) ↔ 𝑘 < 𝑀))
183182adantl 277 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝑘 < (𝑘 + 1) ↔ 𝑘 < 𝑀))
184181, 183mpbid 147 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 < 𝑀)
185184iftrued 3579 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = ((𝐹𝑀) / (𝐴↑(𝑀𝑘))))
186176oveq1d 5966 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ((𝑘 + 1) − 𝑘) = (𝑀𝑘))
187127adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝑘 ∈ ℂ)
188 1cnd 8095 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 1 ∈ ℂ)
189187, 188pncan2d 8392 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ((𝑘 + 1) − 𝑘) = 1)
190186, 189eqtr3d 2241 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝑀𝑘) = 1)
191190oveq2d 5967 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴↑(𝑀𝑘)) = (𝐴↑1))
192132adantr 276 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → 𝐴 ∈ ℂ)
193192exp1d 10820 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴↑1) = 𝐴)
194191, 193eqtrd 2239 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴↑(𝑀𝑘)) = 𝐴)
195194oveq2d 5967 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → ((𝐹𝑀) / (𝐴↑(𝑀𝑘))) = ((𝐹𝑀) / 𝐴))
196185, 195eqtrd 2239 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = ((𝐹𝑀) / 𝐴))
197196oveq2d 5967 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (𝐴 · ((𝐹𝑀) / 𝐴)))
19831, 131, 133divcanap2d 8872 . . . . . . . . . . . 12 (𝜑 → (𝐴 · ((𝐹𝑀) / 𝐴)) = (𝐹𝑀))
199198ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴 · ((𝐹𝑀) / 𝐴)) = (𝐹𝑀))
200197, 199eqtrd 2239 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (𝐹𝑀))
201200fveq2d 5587 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (abs‘(𝐹𝑀)))
202167ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴) · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
203163, 202eqtrd 2239 . . . . . . . . . 10 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
204203adantr 276 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘(𝐴 · if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
205179, 201, 2043eqtr2d 2245 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
206123, 205, 170syl2an2r 595 . . . . . . 7 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ (𝑘 + 1) = 𝑀) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
207 simplll 533 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝜑)
208119adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀 ∈ ℤ)
20990adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘 ∈ ℤ)
210 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1))
211 zleltp1 9435 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀𝑘𝑀 < (𝑘 + 1)))
212119, 209, 211syl2an2r 595 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (𝑀𝑘𝑀 < (𝑘 + 1)))
213210, 212mpbird 167 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀𝑘)
214208, 209, 213, 55syl3anbrc 1184 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘 ∈ (ℤ𝑀))
215214, 8eleqtrrdi 2300 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘𝑍)
216 cvgratz.7 . . . . . . . . 9 ((𝜑𝑘𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
217207, 215, 216syl2anc 411 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
218172adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑀 ∈ ℝ)
219111adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (𝑘 + 1) ∈ ℝ)
220218, 219, 210ltnsymd 8199 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → ¬ (𝑘 + 1) < 𝑀)
221220iffalsed 3582 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
222221fveq2d 5587 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) = (abs‘(𝐹‘(𝑘 + 1))))
223142adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → 𝑘 ∈ ℝ)
224218, 223, 213lensymd 8201 . . . . . . . . . . 11 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → ¬ 𝑘 < 𝑀)
225224iffalsed 3582 . . . . . . . . . 10 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)) = (𝐹𝑘))
226225fveq2d 5587 . . . . . . . . 9 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))) = (abs‘(𝐹𝑘)))
227226oveq2d 5967 . . . . . . . 8 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))) = (𝐴 · (abs‘(𝐹𝑘))))
228217, 222, 2273brtr4d 4079 . . . . . . 7 ((((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) ∧ 𝑀 < (𝑘 + 1)) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
229 ztri3or 9422 . . . . . . . 8 (((𝑘 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑘 + 1) < 𝑀 ∨ (𝑘 + 1) = 𝑀𝑀 < (𝑘 + 1)))
230108, 119, 229syl2anc 411 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) < 𝑀 ∨ (𝑘 + 1) = 𝑀𝑀 < (𝑘 + 1)))
231171, 206, 228, 230mpjao3dan 1320 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))) ≤ (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
232 breq1 4050 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → (𝑖 < 𝑀 ↔ (𝑘 + 1) < 𝑀))
233 oveq2 5959 . . . . . . . . . . . 12 (𝑖 = (𝑘 + 1) → (𝑀𝑖) = (𝑀 − (𝑘 + 1)))
234233oveq2d 5967 . . . . . . . . . . 11 (𝑖 = (𝑘 + 1) → (𝐴↑(𝑀𝑖)) = (𝐴↑(𝑀 − (𝑘 + 1))))
235234oveq2d 5967 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → ((𝐹𝑀) / (𝐴↑(𝑀𝑖))) = ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))))
236 fveq2 5583 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
237232, 235, 236ifbieq12d 3598 . . . . . . . . 9 (𝑖 = (𝑘 + 1) → if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)) = if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))))
238237, 70fvmptg 5662 . . . . . . . 8 (((𝑘 + 1) ∈ ℕ ∧ if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))) ∈ ℂ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1)) = if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))))
239107, 122, 238syl2anc 411 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1)) = if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1))))
240239fveq2d 5587 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1))) = (abs‘if((𝑘 + 1) < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀 − (𝑘 + 1)))), (𝐹‘(𝑘 + 1)))))
241126, 62, 71syl2anc 411 . . . . . . . 8 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘) = if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))
242241fveq2d 5587 . . . . . . 7 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘)) = (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘))))
243242oveq2d 5967 . . . . . 6 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (𝐴 · (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘))) = (𝐴 · (abs‘if(𝑘 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑘))), (𝐹𝑘)))))
244231, 240, 2433brtr4d 4079 . . . . 5 (((𝜑 ∧ 1 ≤ 𝑀) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘(𝑘 + 1))) ≤ (𝐴 · (abs‘((𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))‘𝑘))))
24579, 81, 82, 86, 244cvgratnn 11886 . . . 4 ((𝜑 ∧ 1 ≤ 𝑀) → seq1( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ )
246 eqid 2206 . . . . 5 (ℤ‘1) = (ℤ‘1)
247 1zzd 9406 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝑀) → 1 ∈ ℤ)
248 simpr 110 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝑀) → 1 ≤ 𝑀)
249 eluz2 9661 . . . . . 6 (𝑀 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 1 ≤ 𝑀))
250247, 2, 248, 249syl3anbrc 1184 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → 𝑀 ∈ (ℤ‘1))
251246, 250, 85iserex 11694 . . . 4 ((𝜑 ∧ 1 ≤ 𝑀) → (seq1( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ ))
252245, 251mpbid 147 . . 3 ((𝜑 ∧ 1 ≤ 𝑀) → seq𝑀( + , (𝑖 ∈ ℕ ↦ if(𝑖 < 𝑀, ((𝐹𝑀) / (𝐴↑(𝑀𝑖))), (𝐹𝑖)))) ∈ dom ⇝ )
25378, 252eqeltrd 2283 . 2 ((𝜑 ∧ 1 ≤ 𝑀) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
25433adantr 276 . . . 4 ((𝜑𝑀 ≤ 1) → 𝐴 ∈ ℝ)
25580adantr 276 . . . 4 ((𝜑𝑀 ≤ 1) → 𝐴 < 1)
25634adantr 276 . . . 4 ((𝜑𝑀 ≤ 1) → 0 < 𝐴)
2571adantr 276 . . . . . . 7 ((𝜑𝑀 ≤ 1) → 𝑀 ∈ ℤ)
258257adantr 276 . . . . . 6 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℤ)
259 nnz 9398 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
260259adantl 277 . . . . . 6 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
261258zred 9502 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀 ∈ ℝ)
262 1red 8094 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
263260zred 9502 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
264 simplr 528 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀 ≤ 1)
265 nnge1 9066 . . . . . . . 8 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
266265adantl 277 . . . . . . 7 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑘)
267261, 262, 263, 264, 266letrd 8203 . . . . . 6 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑀𝑘)
268258, 260, 267, 55syl3anbrc 1184 . . . . 5 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ𝑀))
2698eleq2i 2273 . . . . . . 7 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
270269, 5sylan2br 288 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
271270adantlr 477 . . . . 5 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
272268, 271syldan 282 . . . 4 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
273269, 216sylan2br 288 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
274273adantlr 477 . . . . 5 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
275268, 274syldan 282 . . . 4 (((𝜑𝑀 ≤ 1) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
276254, 255, 256, 272, 275cvgratnn 11886 . . 3 ((𝜑𝑀 ≤ 1) → seq1( + , 𝐹) ∈ dom ⇝ )
277 eqid 2206 . . . 4 (ℤ𝑀) = (ℤ𝑀)
278 1zzd 9406 . . . . 5 ((𝜑𝑀 ≤ 1) → 1 ∈ ℤ)
279 simpr 110 . . . . 5 ((𝜑𝑀 ≤ 1) → 𝑀 ≤ 1)
280 eluz2 9661 . . . . 5 (1 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑀 ≤ 1))
281257, 278, 279, 280syl3anbrc 1184 . . . 4 ((𝜑𝑀 ≤ 1) → 1 ∈ (ℤ𝑀))
282277, 281, 271iserex 11694 . . 3 ((𝜑𝑀 ≤ 1) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq1( + , 𝐹) ∈ dom ⇝ ))
283276, 282mpbird 167 . 2 ((𝜑𝑀 ≤ 1) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
284 1z 9405 . . 3 1 ∈ ℤ
285 zletric 9423 . . 3 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀𝑀 ≤ 1))
286284, 1, 285sylancr 414 . 2 (𝜑 → (1 ≤ 𝑀𝑀 ≤ 1))
287253, 283, 286mpjaodan 800 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3o 980   = wceq 1373  wcel 2177  wral 2485  ifcif 3572   class class class wbr 4047  cmpt 4109  dom cdm 4679  cfv 5276  (class class class)co 5951  cc 7930  cr 7931  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937   < clt 8114  cle 8115  cmin 8250   # cap 8661   / cdiv 8752  cn 9043  cz 9379  cuz 9655  +crp 9782  seqcseq 10599  cexp 10690  abscabs 11352  cli 11633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-ico 10023  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709
This theorem is referenced by:  cvgratgt0  11888
  Copyright terms: Public domain W3C validator