ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrabi GIF version

Theorem elrabi 2956
Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
elrabi (𝐴 ∈ {𝑥𝑉𝜑} → 𝐴𝑉)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elrabi
StepHypRef Expression
1 clelab 2355 . . 3 (𝐴 ∈ {𝑥 ∣ (𝑥𝑉𝜑)} ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝑉𝜑)))
2 eleq1 2292 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑉𝐴𝑉))
32anbi1d 465 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑉𝜑) ↔ (𝐴𝑉𝜑)))
43simprbda 383 . . . 4 ((𝑥 = 𝐴 ∧ (𝑥𝑉𝜑)) → 𝐴𝑉)
54exlimiv 1644 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝑉𝜑)) → 𝐴𝑉)
61, 5sylbi 121 . 2 (𝐴 ∈ {𝑥 ∣ (𝑥𝑉𝜑)} → 𝐴𝑉)
7 df-rab 2517 . 2 {𝑥𝑉𝜑} = {𝑥 ∣ (𝑥𝑉𝜑)}
86, 7eleq2s 2324 1 (𝐴 ∈ {𝑥𝑉𝜑} → 𝐴𝑉)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  {cab 2215  {crab 2512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-rab 2517
This theorem is referenced by:  ordtriexmidlem  4610  ordtri2or2exmidlem  4617  onsucelsucexmidlem  4620  ordsoexmid  4653  reg3exmidlemwe  4670  elfvmptrab1  5728  acexmidlemcase  5995  elovmporab  6204  elovmporab1w  6205  ssfirab  7094  exmidonfinlem  7367  cc4f  7451  genpelvl  7695  genpelvu  7696  suplocsrlempr  7990  nnindnn  8076  sup3exmid  9100  nnind  9122  supinfneg  9786  infsupneg  9787  supminfex  9788  ublbneg  9804  zsupcllemstep  10444  infssuzex  10448  infssuzledc  10449  hashinfuni  10994  bezoutlemsup  12525  uzwodc  12553  nninfctlemfo  12556  lcmgcdlem  12594  phisum  12758  oddennn  12958  evenennn  12959  znnen  12964  ennnfonelemg  12969  rrgval  14220  psrbagf  14628  txdis1cn  14946  reopnap  15214  divcnap  15233  limccl  15327  dvlemap  15348  dvaddxxbr  15369  dvmulxxbr  15370  dvcoapbr  15375  dvcjbr  15376  dvrecap  15381  dveflem  15394  sgmval  15651  0sgm  15653  sgmf  15654  sgmnncl  15656  dvdsppwf1o  15657  sgmppw  15660  uhgrss  15869  usgredg2v  16016
  Copyright terms: Public domain W3C validator