ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrabi GIF version

Theorem elrabi 2888
Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
elrabi (𝐴 ∈ {𝑥𝑉𝜑} → 𝐴𝑉)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elrabi
StepHypRef Expression
1 clelab 2301 . . 3 (𝐴 ∈ {𝑥 ∣ (𝑥𝑉𝜑)} ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝑉𝜑)))
2 eleq1 2238 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑉𝐴𝑉))
32anbi1d 465 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑉𝜑) ↔ (𝐴𝑉𝜑)))
43simprbda 383 . . . 4 ((𝑥 = 𝐴 ∧ (𝑥𝑉𝜑)) → 𝐴𝑉)
54exlimiv 1596 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝑉𝜑)) → 𝐴𝑉)
61, 5sylbi 121 . 2 (𝐴 ∈ {𝑥 ∣ (𝑥𝑉𝜑)} → 𝐴𝑉)
7 df-rab 2462 . 2 {𝑥𝑉𝜑} = {𝑥 ∣ (𝑥𝑉𝜑)}
86, 7eleq2s 2270 1 (𝐴 ∈ {𝑥𝑉𝜑} → 𝐴𝑉)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wex 1490  wcel 2146  {cab 2161  {crab 2457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-rab 2462
This theorem is referenced by:  ordtriexmidlem  4512  ordtri2or2exmidlem  4519  onsucelsucexmidlem  4522  ordsoexmid  4555  reg3exmidlemwe  4572  elfvmptrab1  5602  acexmidlemcase  5860  ssfirab  6923  exmidonfinlem  7182  cc4f  7243  genpelvl  7486  genpelvu  7487  suplocsrlempr  7781  nnindnn  7867  sup3exmid  8885  nnind  8906  supinfneg  9566  infsupneg  9567  supminfex  9568  ublbneg  9584  hashinfuni  10723  zsupcllemstep  11911  infssuzex  11915  infssuzledc  11916  bezoutlemsup  11975  uzwodc  12003  lcmgcdlem  12042  phisum  12205  oddennn  12358  evenennn  12359  znnen  12364  ennnfonelemg  12369  txdis1cn  13347  reopnap  13607  divcnap  13624  limccl  13697  dvlemap  13718  dvaddxxbr  13734  dvmulxxbr  13735  dvcoapbr  13740  dvcjbr  13741  dvrecap  13746  dveflem  13756
  Copyright terms: Public domain W3C validator