| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabi | GIF version | ||
| Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| Ref | Expression |
|---|---|
| elrabi | ⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelab 2322 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑))) | |
| 2 | eleq1 2259 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) | |
| 3 | 2 | anbi1d 465 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ (𝐴 ∈ 𝑉 ∧ 𝜑))) |
| 4 | 3 | simprbda 383 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑)) → 𝐴 ∈ 𝑉) |
| 5 | 4 | exlimiv 1612 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑)) → 𝐴 ∈ 𝑉) |
| 6 | 1, 5 | sylbi 121 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} → 𝐴 ∈ 𝑉) |
| 7 | df-rab 2484 | . 2 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} | |
| 8 | 6, 7 | eleq2s 2291 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {cab 2182 {crab 2479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-rab 2484 |
| This theorem is referenced by: ordtriexmidlem 4556 ordtri2or2exmidlem 4563 onsucelsucexmidlem 4566 ordsoexmid 4599 reg3exmidlemwe 4616 elfvmptrab1 5657 acexmidlemcase 5918 elovmporab 6125 elovmporab1w 6126 ssfirab 6999 exmidonfinlem 7263 cc4f 7339 genpelvl 7582 genpelvu 7583 suplocsrlempr 7877 nnindnn 7963 sup3exmid 8987 nnind 9009 supinfneg 9672 infsupneg 9673 supminfex 9674 ublbneg 9690 zsupcllemstep 10322 infssuzex 10326 infssuzledc 10327 hashinfuni 10872 bezoutlemsup 12187 uzwodc 12215 nninfctlemfo 12218 lcmgcdlem 12256 phisum 12420 oddennn 12620 evenennn 12621 znnen 12626 ennnfonelemg 12631 rrgval 13844 psrbagf 14250 txdis1cn 14540 reopnap 14808 divcnap 14827 limccl 14921 dvlemap 14942 dvaddxxbr 14963 dvmulxxbr 14964 dvcoapbr 14969 dvcjbr 14970 dvrecap 14975 dveflem 14988 sgmval 15245 0sgm 15247 sgmf 15248 sgmnncl 15250 dvdsppwf1o 15251 sgmppw 15254 |
| Copyright terms: Public domain | W3C validator |