| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabi | GIF version | ||
| Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| Ref | Expression |
|---|---|
| elrabi | ⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelab 2331 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑))) | |
| 2 | eleq1 2268 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) | |
| 3 | 2 | anbi1d 465 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ (𝐴 ∈ 𝑉 ∧ 𝜑))) |
| 4 | 3 | simprbda 383 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑)) → 𝐴 ∈ 𝑉) |
| 5 | 4 | exlimiv 1621 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑)) → 𝐴 ∈ 𝑉) |
| 6 | 1, 5 | sylbi 121 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} → 𝐴 ∈ 𝑉) |
| 7 | df-rab 2493 | . 2 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} | |
| 8 | 6, 7 | eleq2s 2300 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1515 ∈ wcel 2176 {cab 2191 {crab 2488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-rab 2493 |
| This theorem is referenced by: ordtriexmidlem 4567 ordtri2or2exmidlem 4574 onsucelsucexmidlem 4577 ordsoexmid 4610 reg3exmidlemwe 4627 elfvmptrab1 5674 acexmidlemcase 5939 elovmporab 6146 elovmporab1w 6147 ssfirab 7033 exmidonfinlem 7301 cc4f 7381 genpelvl 7625 genpelvu 7626 suplocsrlempr 7920 nnindnn 8006 sup3exmid 9030 nnind 9052 supinfneg 9716 infsupneg 9717 supminfex 9718 ublbneg 9734 zsupcllemstep 10372 infssuzex 10376 infssuzledc 10377 hashinfuni 10922 bezoutlemsup 12330 uzwodc 12358 nninfctlemfo 12361 lcmgcdlem 12399 phisum 12563 oddennn 12763 evenennn 12764 znnen 12769 ennnfonelemg 12774 rrgval 14024 psrbagf 14432 txdis1cn 14750 reopnap 15018 divcnap 15037 limccl 15131 dvlemap 15152 dvaddxxbr 15173 dvmulxxbr 15174 dvcoapbr 15179 dvcjbr 15180 dvrecap 15185 dveflem 15198 sgmval 15455 0sgm 15457 sgmf 15458 sgmnncl 15460 dvdsppwf1o 15461 sgmppw 15464 |
| Copyright terms: Public domain | W3C validator |