| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabi | GIF version | ||
| Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| Ref | Expression |
|---|---|
| elrabi | ⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelab 2322 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑))) | |
| 2 | eleq1 2259 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) | |
| 3 | 2 | anbi1d 465 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ (𝐴 ∈ 𝑉 ∧ 𝜑))) |
| 4 | 3 | simprbda 383 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑)) → 𝐴 ∈ 𝑉) |
| 5 | 4 | exlimiv 1612 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑)) → 𝐴 ∈ 𝑉) |
| 6 | 1, 5 | sylbi 121 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} → 𝐴 ∈ 𝑉) |
| 7 | df-rab 2484 | . 2 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} | |
| 8 | 6, 7 | eleq2s 2291 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {cab 2182 {crab 2479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-rab 2484 |
| This theorem is referenced by: ordtriexmidlem 4556 ordtri2or2exmidlem 4563 onsucelsucexmidlem 4566 ordsoexmid 4599 reg3exmidlemwe 4616 elfvmptrab1 5659 acexmidlemcase 5920 elovmporab 6127 elovmporab1w 6128 ssfirab 7006 exmidonfinlem 7274 cc4f 7354 genpelvl 7598 genpelvu 7599 suplocsrlempr 7893 nnindnn 7979 sup3exmid 9003 nnind 9025 supinfneg 9688 infsupneg 9689 supminfex 9690 ublbneg 9706 zsupcllemstep 10338 infssuzex 10342 infssuzledc 10343 hashinfuni 10888 bezoutlemsup 12203 uzwodc 12231 nninfctlemfo 12234 lcmgcdlem 12272 phisum 12436 oddennn 12636 evenennn 12637 znnen 12642 ennnfonelemg 12647 rrgval 13896 psrbagf 14304 txdis1cn 14622 reopnap 14890 divcnap 14909 limccl 15003 dvlemap 15024 dvaddxxbr 15045 dvmulxxbr 15046 dvcoapbr 15051 dvcjbr 15052 dvrecap 15057 dveflem 15070 sgmval 15327 0sgm 15329 sgmf 15330 sgmnncl 15332 dvdsppwf1o 15333 sgmppw 15336 |
| Copyright terms: Public domain | W3C validator |