ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrabi GIF version

Theorem elrabi 2892
Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
elrabi (𝐴 ∈ {𝑥𝑉𝜑} → 𝐴𝑉)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elrabi
StepHypRef Expression
1 clelab 2303 . . 3 (𝐴 ∈ {𝑥 ∣ (𝑥𝑉𝜑)} ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝑉𝜑)))
2 eleq1 2240 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑉𝐴𝑉))
32anbi1d 465 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑉𝜑) ↔ (𝐴𝑉𝜑)))
43simprbda 383 . . . 4 ((𝑥 = 𝐴 ∧ (𝑥𝑉𝜑)) → 𝐴𝑉)
54exlimiv 1598 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝑉𝜑)) → 𝐴𝑉)
61, 5sylbi 121 . 2 (𝐴 ∈ {𝑥 ∣ (𝑥𝑉𝜑)} → 𝐴𝑉)
7 df-rab 2464 . 2 {𝑥𝑉𝜑} = {𝑥 ∣ (𝑥𝑉𝜑)}
86, 7eleq2s 2272 1 (𝐴 ∈ {𝑥𝑉𝜑} → 𝐴𝑉)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wex 1492  wcel 2148  {cab 2163  {crab 2459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-rab 2464
This theorem is referenced by:  ordtriexmidlem  4520  ordtri2or2exmidlem  4527  onsucelsucexmidlem  4530  ordsoexmid  4563  reg3exmidlemwe  4580  elfvmptrab1  5612  acexmidlemcase  5872  ssfirab  6935  exmidonfinlem  7194  cc4f  7270  genpelvl  7513  genpelvu  7514  suplocsrlempr  7808  nnindnn  7894  sup3exmid  8916  nnind  8937  supinfneg  9597  infsupneg  9598  supminfex  9599  ublbneg  9615  hashinfuni  10759  zsupcllemstep  11948  infssuzex  11952  infssuzledc  11953  bezoutlemsup  12012  uzwodc  12040  lcmgcdlem  12079  phisum  12242  oddennn  12395  evenennn  12396  znnen  12401  ennnfonelemg  12406  txdis1cn  13863  reopnap  14123  divcnap  14140  limccl  14213  dvlemap  14234  dvaddxxbr  14250  dvmulxxbr  14251  dvcoapbr  14256  dvcjbr  14257  dvrecap  14262  dveflem  14272
  Copyright terms: Public domain W3C validator