Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrabi | GIF version |
Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
Ref | Expression |
---|---|
elrabi | ⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clelab 2292 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑))) | |
2 | eleq1 2229 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) | |
3 | 2 | anbi1d 461 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ (𝐴 ∈ 𝑉 ∧ 𝜑))) |
4 | 3 | simprbda 381 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑)) → 𝐴 ∈ 𝑉) |
5 | 4 | exlimiv 1586 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑)) → 𝐴 ∈ 𝑉) |
6 | 1, 5 | sylbi 120 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} → 𝐴 ∈ 𝑉) |
7 | df-rab 2453 | . 2 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} | |
8 | 6, 7 | eleq2s 2261 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∃wex 1480 ∈ wcel 2136 {cab 2151 {crab 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-rab 2453 |
This theorem is referenced by: ordtriexmidlem 4496 ordtri2or2exmidlem 4503 onsucelsucexmidlem 4506 ordsoexmid 4539 reg3exmidlemwe 4556 elfvmptrab1 5580 acexmidlemcase 5837 ssfirab 6899 exmidonfinlem 7149 cc4f 7210 genpelvl 7453 genpelvu 7454 suplocsrlempr 7748 nnindnn 7834 sup3exmid 8852 nnind 8873 supinfneg 9533 infsupneg 9534 supminfex 9535 ublbneg 9551 hashinfuni 10690 zsupcllemstep 11878 infssuzex 11882 infssuzledc 11883 bezoutlemsup 11942 uzwodc 11970 lcmgcdlem 12009 phisum 12172 oddennn 12325 evenennn 12326 znnen 12331 ennnfonelemg 12336 txdis1cn 12918 reopnap 13178 divcnap 13195 limccl 13268 dvlemap 13289 dvaddxxbr 13305 dvmulxxbr 13306 dvcoapbr 13311 dvcjbr 13312 dvrecap 13317 dveflem 13327 |
Copyright terms: Public domain | W3C validator |