ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrabi GIF version

Theorem elrabi 2917
Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
elrabi (𝐴 ∈ {𝑥𝑉𝜑} → 𝐴𝑉)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elrabi
StepHypRef Expression
1 clelab 2322 . . 3 (𝐴 ∈ {𝑥 ∣ (𝑥𝑉𝜑)} ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝑉𝜑)))
2 eleq1 2259 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑉𝐴𝑉))
32anbi1d 465 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑉𝜑) ↔ (𝐴𝑉𝜑)))
43simprbda 383 . . . 4 ((𝑥 = 𝐴 ∧ (𝑥𝑉𝜑)) → 𝐴𝑉)
54exlimiv 1612 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝑉𝜑)) → 𝐴𝑉)
61, 5sylbi 121 . 2 (𝐴 ∈ {𝑥 ∣ (𝑥𝑉𝜑)} → 𝐴𝑉)
7 df-rab 2484 . 2 {𝑥𝑉𝜑} = {𝑥 ∣ (𝑥𝑉𝜑)}
86, 7eleq2s 2291 1 (𝐴 ∈ {𝑥𝑉𝜑} → 𝐴𝑉)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  {cab 2182  {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-rab 2484
This theorem is referenced by:  ordtriexmidlem  4556  ordtri2or2exmidlem  4563  onsucelsucexmidlem  4566  ordsoexmid  4599  reg3exmidlemwe  4616  elfvmptrab1  5659  acexmidlemcase  5920  elovmporab  6127  elovmporab1w  6128  ssfirab  7006  exmidonfinlem  7274  cc4f  7354  genpelvl  7598  genpelvu  7599  suplocsrlempr  7893  nnindnn  7979  sup3exmid  9003  nnind  9025  supinfneg  9688  infsupneg  9689  supminfex  9690  ublbneg  9706  zsupcllemstep  10338  infssuzex  10342  infssuzledc  10343  hashinfuni  10888  bezoutlemsup  12203  uzwodc  12231  nninfctlemfo  12234  lcmgcdlem  12272  phisum  12436  oddennn  12636  evenennn  12637  znnen  12642  ennnfonelemg  12647  rrgval  13896  psrbagf  14304  txdis1cn  14622  reopnap  14890  divcnap  14909  limccl  15003  dvlemap  15024  dvaddxxbr  15045  dvmulxxbr  15046  dvcoapbr  15051  dvcjbr  15052  dvrecap  15057  dveflem  15070  sgmval  15327  0sgm  15329  sgmf  15330  sgmnncl  15332  dvdsppwf1o  15333  sgmppw  15336
  Copyright terms: Public domain W3C validator