Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrabi | GIF version |
Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
Ref | Expression |
---|---|
elrabi | ⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clelab 2301 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑))) | |
2 | eleq1 2238 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) | |
3 | 2 | anbi1d 465 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ (𝐴 ∈ 𝑉 ∧ 𝜑))) |
4 | 3 | simprbda 383 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑)) → 𝐴 ∈ 𝑉) |
5 | 4 | exlimiv 1596 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑)) → 𝐴 ∈ 𝑉) |
6 | 1, 5 | sylbi 121 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} → 𝐴 ∈ 𝑉) |
7 | df-rab 2462 | . 2 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} | |
8 | 6, 7 | eleq2s 2270 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∃wex 1490 ∈ wcel 2146 {cab 2161 {crab 2457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-rab 2462 |
This theorem is referenced by: ordtriexmidlem 4512 ordtri2or2exmidlem 4519 onsucelsucexmidlem 4522 ordsoexmid 4555 reg3exmidlemwe 4572 elfvmptrab1 5602 acexmidlemcase 5860 ssfirab 6923 exmidonfinlem 7182 cc4f 7243 genpelvl 7486 genpelvu 7487 suplocsrlempr 7781 nnindnn 7867 sup3exmid 8885 nnind 8906 supinfneg 9566 infsupneg 9567 supminfex 9568 ublbneg 9584 hashinfuni 10723 zsupcllemstep 11911 infssuzex 11915 infssuzledc 11916 bezoutlemsup 11975 uzwodc 12003 lcmgcdlem 12042 phisum 12205 oddennn 12358 evenennn 12359 znnen 12364 ennnfonelemg 12369 txdis1cn 13347 reopnap 13607 divcnap 13624 limccl 13697 dvlemap 13718 dvaddxxbr 13734 dvmulxxbr 13735 dvcoapbr 13740 dvcjbr 13741 dvrecap 13746 dveflem 13756 |
Copyright terms: Public domain | W3C validator |