ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrabi GIF version

Theorem elrabi 2926
Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
elrabi (𝐴 ∈ {𝑥𝑉𝜑} → 𝐴𝑉)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elrabi
StepHypRef Expression
1 clelab 2331 . . 3 (𝐴 ∈ {𝑥 ∣ (𝑥𝑉𝜑)} ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝑉𝜑)))
2 eleq1 2268 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑉𝐴𝑉))
32anbi1d 465 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑉𝜑) ↔ (𝐴𝑉𝜑)))
43simprbda 383 . . . 4 ((𝑥 = 𝐴 ∧ (𝑥𝑉𝜑)) → 𝐴𝑉)
54exlimiv 1621 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝑉𝜑)) → 𝐴𝑉)
61, 5sylbi 121 . 2 (𝐴 ∈ {𝑥 ∣ (𝑥𝑉𝜑)} → 𝐴𝑉)
7 df-rab 2493 . 2 {𝑥𝑉𝜑} = {𝑥 ∣ (𝑥𝑉𝜑)}
86, 7eleq2s 2300 1 (𝐴 ∈ {𝑥𝑉𝜑} → 𝐴𝑉)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1515  wcel 2176  {cab 2191  {crab 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-rab 2493
This theorem is referenced by:  ordtriexmidlem  4567  ordtri2or2exmidlem  4574  onsucelsucexmidlem  4577  ordsoexmid  4610  reg3exmidlemwe  4627  elfvmptrab1  5674  acexmidlemcase  5939  elovmporab  6146  elovmporab1w  6147  ssfirab  7033  exmidonfinlem  7301  cc4f  7381  genpelvl  7625  genpelvu  7626  suplocsrlempr  7920  nnindnn  8006  sup3exmid  9030  nnind  9052  supinfneg  9716  infsupneg  9717  supminfex  9718  ublbneg  9734  zsupcllemstep  10372  infssuzex  10376  infssuzledc  10377  hashinfuni  10922  bezoutlemsup  12330  uzwodc  12358  nninfctlemfo  12361  lcmgcdlem  12399  phisum  12563  oddennn  12763  evenennn  12764  znnen  12769  ennnfonelemg  12774  rrgval  14024  psrbagf  14432  txdis1cn  14750  reopnap  15018  divcnap  15037  limccl  15131  dvlemap  15152  dvaddxxbr  15173  dvmulxxbr  15174  dvcoapbr  15179  dvcjbr  15180  dvrecap  15185  dveflem  15198  sgmval  15455  0sgm  15457  sgmf  15458  sgmnncl  15460  dvdsppwf1o  15461  sgmppw  15464
  Copyright terms: Public domain W3C validator