| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabi | GIF version | ||
| Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| Ref | Expression |
|---|---|
| elrabi | ⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelab 2355 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑))) | |
| 2 | eleq1 2292 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) | |
| 3 | 2 | anbi1d 465 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ (𝐴 ∈ 𝑉 ∧ 𝜑))) |
| 4 | 3 | simprbda 383 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑)) → 𝐴 ∈ 𝑉) |
| 5 | 4 | exlimiv 1644 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑)) → 𝐴 ∈ 𝑉) |
| 6 | 1, 5 | sylbi 121 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} → 𝐴 ∈ 𝑉) |
| 7 | df-rab 2517 | . 2 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} | |
| 8 | 6, 7 | eleq2s 2324 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {cab 2215 {crab 2512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-rab 2517 |
| This theorem is referenced by: ordtriexmidlem 4610 ordtri2or2exmidlem 4617 onsucelsucexmidlem 4620 ordsoexmid 4653 reg3exmidlemwe 4670 elfvmptrab1 5728 acexmidlemcase 5995 elovmporab 6204 elovmporab1w 6205 ssfirab 7094 exmidonfinlem 7367 cc4f 7451 genpelvl 7695 genpelvu 7696 suplocsrlempr 7990 nnindnn 8076 sup3exmid 9100 nnind 9122 supinfneg 9786 infsupneg 9787 supminfex 9788 ublbneg 9804 zsupcllemstep 10444 infssuzex 10448 infssuzledc 10449 hashinfuni 10994 bezoutlemsup 12525 uzwodc 12553 nninfctlemfo 12556 lcmgcdlem 12594 phisum 12758 oddennn 12958 evenennn 12959 znnen 12964 ennnfonelemg 12969 rrgval 14220 psrbagf 14628 txdis1cn 14946 reopnap 15214 divcnap 15233 limccl 15327 dvlemap 15348 dvaddxxbr 15369 dvmulxxbr 15370 dvcoapbr 15375 dvcjbr 15376 dvrecap 15381 dveflem 15394 sgmval 15651 0sgm 15653 sgmf 15654 sgmnncl 15656 dvdsppwf1o 15657 sgmppw 15660 uhgrss 15869 usgredg2v 16016 |
| Copyright terms: Public domain | W3C validator |