| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabi | GIF version | ||
| Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| Ref | Expression |
|---|---|
| elrabi | ⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelab 2333 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑))) | |
| 2 | eleq1 2270 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) | |
| 3 | 2 | anbi1d 465 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ (𝐴 ∈ 𝑉 ∧ 𝜑))) |
| 4 | 3 | simprbda 383 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑)) → 𝐴 ∈ 𝑉) |
| 5 | 4 | exlimiv 1622 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝑉 ∧ 𝜑)) → 𝐴 ∈ 𝑉) |
| 6 | 1, 5 | sylbi 121 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} → 𝐴 ∈ 𝑉) |
| 7 | df-rab 2495 | . 2 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} | |
| 8 | 6, 7 | eleq2s 2302 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2178 {cab 2193 {crab 2490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-rab 2495 |
| This theorem is referenced by: ordtriexmidlem 4585 ordtri2or2exmidlem 4592 onsucelsucexmidlem 4595 ordsoexmid 4628 reg3exmidlemwe 4645 elfvmptrab1 5697 acexmidlemcase 5962 elovmporab 6169 elovmporab1w 6170 ssfirab 7059 exmidonfinlem 7332 cc4f 7416 genpelvl 7660 genpelvu 7661 suplocsrlempr 7955 nnindnn 8041 sup3exmid 9065 nnind 9087 supinfneg 9751 infsupneg 9752 supminfex 9753 ublbneg 9769 zsupcllemstep 10409 infssuzex 10413 infssuzledc 10414 hashinfuni 10959 bezoutlemsup 12445 uzwodc 12473 nninfctlemfo 12476 lcmgcdlem 12514 phisum 12678 oddennn 12878 evenennn 12879 znnen 12884 ennnfonelemg 12889 rrgval 14139 psrbagf 14547 txdis1cn 14865 reopnap 15133 divcnap 15152 limccl 15246 dvlemap 15267 dvaddxxbr 15288 dvmulxxbr 15289 dvcoapbr 15294 dvcjbr 15295 dvrecap 15300 dveflem 15313 sgmval 15570 0sgm 15572 sgmf 15573 sgmnncl 15575 dvdsppwf1o 15576 sgmppw 15579 uhgrss 15786 |
| Copyright terms: Public domain | W3C validator |