ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blgt0 GIF version

Theorem blgt0 14581
Description: A nonempty ball implies that the radius is positive. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
blgt0 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 < 𝑅)

Proof of Theorem blgt0
StepHypRef Expression
1 0xr 8068 . . 3 0 ∈ ℝ*
21a1i 9 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ∈ ℝ*)
3 simpl1 1002 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
4 simpl2 1003 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑃𝑋)
5 elbl 14570 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)))
65simprbda 383 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝐴𝑋)
7 xmetcl 14531 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → (𝑃𝐷𝐴) ∈ ℝ*)
83, 4, 6, 7syl3anc 1249 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝐴) ∈ ℝ*)
9 simpl3 1004 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑅 ∈ ℝ*)
10 xmetge0 14544 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → 0 ≤ (𝑃𝐷𝐴))
113, 4, 6, 10syl3anc 1249 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑃𝐷𝐴))
125simplbda 384 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝐴) < 𝑅)
132, 8, 9, 11, 12xrlelttrd 9879 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 < 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2164   class class class wbr 4030  cfv 5255  (class class class)co 5919  0cc0 7874  *cxr 8055   < clt 8056  cle 8057  ∞Metcxmet 14035  ballcbl 14037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990  ax-pre-mulgt0 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-2 9043  df-xadd 9842  df-psmet 14042  df-xmet 14043  df-bl 14045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator