ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blgt0 GIF version

Theorem blgt0 12385
Description: A nonempty ball implies that the radius is positive. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
blgt0 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 < 𝑅)

Proof of Theorem blgt0
StepHypRef Expression
1 0xr 7730 . . 3 0 ∈ ℝ*
21a1i 9 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ∈ ℝ*)
3 simpl1 965 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
4 simpl2 966 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑃𝑋)
5 elbl 12374 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)))
65simprbda 378 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝐴𝑋)
7 xmetcl 12335 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → (𝑃𝐷𝐴) ∈ ℝ*)
83, 4, 6, 7syl3anc 1197 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝐴) ∈ ℝ*)
9 simpl3 967 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑅 ∈ ℝ*)
10 xmetge0 12348 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → 0 ≤ (𝑃𝐷𝐴))
113, 4, 6, 10syl3anc 1197 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑃𝐷𝐴))
125simplbda 379 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝐴) < 𝑅)
132, 8, 9, 11, 12xrlelttrd 9480 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 < 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 943  wcel 1461   class class class wbr 3893  cfv 5079  (class class class)co 5726  0cc0 7541  *cxr 7717   < clt 7718  cle 7719  ∞Metcxmet 11986  ballcbl 11988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-ltadd 7655  ax-pre-mulgt0 7656
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-po 4176  df-iso 4177  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-map 6496  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-2 8683  df-xadd 9447  df-psmet 11993  df-xmet 11994  df-bl 11996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator