| Step | Hyp | Ref
| Expression |
| 1 | | subrguss.3 |
. . . . . . . . 9
⊢ 𝑉 = (Unit‘𝑆) |
| 2 | 1 | a1i 9 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 = (Unit‘𝑆)) |
| 3 | | eqidd 2197 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(1r‘𝑆) =
(1r‘𝑆)) |
| 4 | | eqidd 2197 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(∥r‘𝑆) = (∥r‘𝑆)) |
| 5 | | eqidd 2197 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(oppr‘𝑆) = (oppr‘𝑆)) |
| 6 | | eqidd 2197 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(∥r‘(oppr‘𝑆)) =
(∥r‘(oppr‘𝑆))) |
| 7 | | subrguss.1 |
. . . . . . . . . 10
⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| 8 | 7 | subrgring 13856 |
. . . . . . . . 9
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| 9 | | ringsrg 13679 |
. . . . . . . . 9
⊢ (𝑆 ∈ Ring → 𝑆 ∈ SRing) |
| 10 | 8, 9 | syl 14 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ SRing) |
| 11 | 2, 3, 4, 5, 6, 10 | isunitd 13738 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ 𝑉 ↔ (𝑥(∥r‘𝑆)(1r‘𝑆) ∧ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑆)))) |
| 12 | 11 | simprbda 383 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥(∥r‘𝑆)(1r‘𝑆)) |
| 13 | | eqid 2196 |
. . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 14 | 7, 13 | subrg1 13863 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(1r‘𝑅) =
(1r‘𝑆)) |
| 15 | 14 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (1r‘𝑅) = (1r‘𝑆)) |
| 16 | 12, 15 | breqtrrd 4062 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥(∥r‘𝑆)(1r‘𝑅)) |
| 17 | | eqid 2196 |
. . . . . . . 8
⊢
(∥r‘𝑅) = (∥r‘𝑅) |
| 18 | | eqid 2196 |
. . . . . . . 8
⊢
(∥r‘𝑆) = (∥r‘𝑆) |
| 19 | 7, 17, 18 | subrgdvds 13867 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(∥r‘𝑆) ⊆ (∥r‘𝑅)) |
| 20 | 19 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (∥r‘𝑆) ⊆
(∥r‘𝑅)) |
| 21 | 20 | ssbrd 4077 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (𝑥(∥r‘𝑆)(1r‘𝑅) → 𝑥(∥r‘𝑅)(1r‘𝑅))) |
| 22 | 16, 21 | mpd 13 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥(∥r‘𝑅)(1r‘𝑅)) |
| 23 | | subrgrcl 13858 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
| 24 | 23 | adantr 276 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑅 ∈ Ring) |
| 25 | | eqid 2196 |
. . . . . . . 8
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
| 26 | | eqid 2196 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 27 | 25, 26 | opprbasg 13707 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘(oppr‘𝑅))) |
| 28 | 24, 27 | syl 14 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (Base‘𝑅) =
(Base‘(oppr‘𝑅))) |
| 29 | | eqidd 2197 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) →
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅))) |
| 30 | 25 | opprring 13711 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(oppr‘𝑅) ∈ Ring) |
| 31 | | ringsrg 13679 |
. . . . . . 7
⊢
((oppr‘𝑅) ∈ Ring →
(oppr‘𝑅) ∈ SRing) |
| 32 | 24, 30, 31 | 3syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (oppr‘𝑅) ∈ SRing) |
| 33 | | eqidd 2197 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) →
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅))) |
| 34 | 7 | subrgbas 13862 |
. . . . . . . . 9
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 35 | 34 | adantr 276 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝐴 = (Base‘𝑆)) |
| 36 | 26 | subrgss 13854 |
. . . . . . . . 9
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 37 | 36 | adantr 276 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝐴 ⊆ (Base‘𝑅)) |
| 38 | 35, 37 | eqsstrrd 3221 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
| 39 | | eqidd 2197 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (Base‘𝑆) = (Base‘𝑆)) |
| 40 | 1 | a1i 9 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑉 = (Unit‘𝑆)) |
| 41 | 10 | adantr 276 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑆 ∈ SRing) |
| 42 | | simpr 110 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) |
| 43 | 39, 40, 41, 42 | unitcld 13740 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑆)) |
| 44 | 38, 43 | sseldd 3185 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑅)) |
| 45 | | eqid 2196 |
. . . . . . . . 9
⊢
(invr‘𝑆) = (invr‘𝑆) |
| 46 | | eqid 2196 |
. . . . . . . . 9
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 47 | 1, 45, 46 | ringinvcl 13757 |
. . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ (Base‘𝑆)) |
| 48 | 8, 47 | sylan 283 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ (Base‘𝑆)) |
| 49 | 38, 48 | sseldd 3185 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ (Base‘𝑅)) |
| 50 | 28, 29, 32, 33, 44, 49 | dvdsrmuld 13728 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥(∥r‘(oppr‘𝑅))(((invr‘𝑆)‘𝑥)(.r‘(oppr‘𝑅))𝑥)) |
| 51 | 1, 45 | unitinvcl 13755 |
. . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
| 52 | 8, 51 | sylan 283 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
| 53 | | eqid 2196 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 54 | | eqid 2196 |
. . . . . . . 8
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) |
| 55 | 26, 53, 25, 54 | opprmulg 13703 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧
((invr‘𝑆)‘𝑥) ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → (((invr‘𝑆)‘𝑥)(.r‘(oppr‘𝑅))𝑥) = (𝑥(.r‘𝑅)((invr‘𝑆)‘𝑥))) |
| 56 | 24, 52, 42, 55 | syl3anc 1249 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (((invr‘𝑆)‘𝑥)(.r‘(oppr‘𝑅))𝑥) = (𝑥(.r‘𝑅)((invr‘𝑆)‘𝑥))) |
| 57 | | eqid 2196 |
. . . . . . . . 9
⊢
(.r‘𝑆) = (.r‘𝑆) |
| 58 | | eqid 2196 |
. . . . . . . . 9
⊢
(1r‘𝑆) = (1r‘𝑆) |
| 59 | 1, 45, 57, 58 | unitrinv 13759 |
. . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉) → (𝑥(.r‘𝑆)((invr‘𝑆)‘𝑥)) = (1r‘𝑆)) |
| 60 | 8, 59 | sylan 283 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (𝑥(.r‘𝑆)((invr‘𝑆)‘𝑥)) = (1r‘𝑆)) |
| 61 | 7, 53 | ressmulrg 12847 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) →
(.r‘𝑅) =
(.r‘𝑆)) |
| 62 | 23, 61 | mpdan 421 |
. . . . . . . . 9
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(.r‘𝑅) =
(.r‘𝑆)) |
| 63 | 62 | adantr 276 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (.r‘𝑅) = (.r‘𝑆)) |
| 64 | 63 | oveqd 5942 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (𝑥(.r‘𝑅)((invr‘𝑆)‘𝑥)) = (𝑥(.r‘𝑆)((invr‘𝑆)‘𝑥))) |
| 65 | 60, 64, 15 | 3eqtr4d 2239 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (𝑥(.r‘𝑅)((invr‘𝑆)‘𝑥)) = (1r‘𝑅)) |
| 66 | 56, 65 | eqtrd 2229 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (((invr‘𝑆)‘𝑥)(.r‘(oppr‘𝑅))𝑥) = (1r‘𝑅)) |
| 67 | 50, 66 | breqtrd 4060 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
| 68 | | subrguss.2 |
. . . . . . 7
⊢ 𝑈 = (Unit‘𝑅) |
| 69 | 68 | a1i 9 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Unit‘𝑅)) |
| 70 | | eqidd 2197 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(1r‘𝑅) =
(1r‘𝑅)) |
| 71 | | eqidd 2197 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(∥r‘𝑅) = (∥r‘𝑅)) |
| 72 | | eqidd 2197 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(oppr‘𝑅) = (oppr‘𝑅)) |
| 73 | | eqidd 2197 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅))) |
| 74 | | ringsrg 13679 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
| 75 | 23, 74 | syl 14 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ SRing) |
| 76 | 69, 70, 71, 72, 73, 75 | isunitd 13738 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ 𝑈 ↔ (𝑥(∥r‘𝑅)(1r‘𝑅) ∧ 𝑥(∥r‘(oppr‘𝑅))(1r‘𝑅)))) |
| 77 | 76 | adantr 276 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (𝑥 ∈ 𝑈 ↔ (𝑥(∥r‘𝑅)(1r‘𝑅) ∧ 𝑥(∥r‘(oppr‘𝑅))(1r‘𝑅)))) |
| 78 | 22, 67, 77 | mpbir2and 946 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑈) |
| 79 | 78 | ex 115 |
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ 𝑉 → 𝑥 ∈ 𝑈)) |
| 80 | 79 | ssrdv 3190 |
1
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) |