Step | Hyp | Ref
| Expression |
1 | | subrguss.3 |
. . . . . . . . 9
⊢ 𝑉 = (Unit‘𝑆) |
2 | 1 | a1i 9 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 = (Unit‘𝑆)) |
3 | | eqidd 2178 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(1r‘𝑆) =
(1r‘𝑆)) |
4 | | eqidd 2178 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(∥r‘𝑆) = (∥r‘𝑆)) |
5 | | eqidd 2178 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(oppr‘𝑆) = (oppr‘𝑆)) |
6 | | eqidd 2178 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(∥r‘(oppr‘𝑆)) =
(∥r‘(oppr‘𝑆))) |
7 | | subrguss.1 |
. . . . . . . . . 10
⊢ 𝑆 = (𝑅 ↾s 𝐴) |
8 | 7 | subrgring 13350 |
. . . . . . . . 9
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
9 | | ringsrg 13229 |
. . . . . . . . 9
⊢ (𝑆 ∈ Ring → 𝑆 ∈ SRing) |
10 | 8, 9 | syl 14 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ SRing) |
11 | 2, 3, 4, 5, 6, 10 | isunitd 13280 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ 𝑉 ↔ (𝑥(∥r‘𝑆)(1r‘𝑆) ∧ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑆)))) |
12 | 11 | simprbda 383 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥(∥r‘𝑆)(1r‘𝑆)) |
13 | | eqid 2177 |
. . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) |
14 | 7, 13 | subrg1 13357 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(1r‘𝑅) =
(1r‘𝑆)) |
15 | 14 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (1r‘𝑅) = (1r‘𝑆)) |
16 | 12, 15 | breqtrrd 4033 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥(∥r‘𝑆)(1r‘𝑅)) |
17 | | eqid 2177 |
. . . . . . . 8
⊢
(∥r‘𝑅) = (∥r‘𝑅) |
18 | | eqid 2177 |
. . . . . . . 8
⊢
(∥r‘𝑆) = (∥r‘𝑆) |
19 | 7, 17, 18 | subrgdvds 13361 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(∥r‘𝑆) ⊆ (∥r‘𝑅)) |
20 | 19 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (∥r‘𝑆) ⊆
(∥r‘𝑅)) |
21 | 20 | ssbrd 4048 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (𝑥(∥r‘𝑆)(1r‘𝑅) → 𝑥(∥r‘𝑅)(1r‘𝑅))) |
22 | 16, 21 | mpd 13 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥(∥r‘𝑅)(1r‘𝑅)) |
23 | | subrgrcl 13352 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
24 | 23 | adantr 276 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑅 ∈ Ring) |
25 | | eqid 2177 |
. . . . . . . 8
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
26 | | eqid 2177 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
27 | 25, 26 | opprbasg 13252 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘(oppr‘𝑅))) |
28 | 24, 27 | syl 14 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (Base‘𝑅) =
(Base‘(oppr‘𝑅))) |
29 | | eqidd 2178 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) →
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅))) |
30 | 25 | opprring 13254 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(oppr‘𝑅) ∈ Ring) |
31 | | ringsrg 13229 |
. . . . . . 7
⊢
((oppr‘𝑅) ∈ Ring →
(oppr‘𝑅) ∈ SRing) |
32 | 24, 30, 31 | 3syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (oppr‘𝑅) ∈ SRing) |
33 | | eqidd 2178 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) →
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅))) |
34 | 7 | subrgbas 13356 |
. . . . . . . . 9
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
35 | 34 | adantr 276 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝐴 = (Base‘𝑆)) |
36 | 26 | subrgss 13348 |
. . . . . . . . 9
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
37 | 36 | adantr 276 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝐴 ⊆ (Base‘𝑅)) |
38 | 35, 37 | eqsstrrd 3194 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
39 | | eqidd 2178 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (Base‘𝑆) = (Base‘𝑆)) |
40 | 1 | a1i 9 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑉 = (Unit‘𝑆)) |
41 | 10 | adantr 276 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑆 ∈ SRing) |
42 | | simpr 110 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) |
43 | 39, 40, 41, 42 | unitcld 13282 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑆)) |
44 | 38, 43 | sseldd 3158 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑅)) |
45 | | eqid 2177 |
. . . . . . . . 9
⊢
(invr‘𝑆) = (invr‘𝑆) |
46 | | eqid 2177 |
. . . . . . . . 9
⊢
(Base‘𝑆) =
(Base‘𝑆) |
47 | 1, 45, 46 | ringinvcl 13299 |
. . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ (Base‘𝑆)) |
48 | 8, 47 | sylan 283 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ (Base‘𝑆)) |
49 | 38, 48 | sseldd 3158 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ (Base‘𝑅)) |
50 | 28, 29, 32, 33, 44, 49 | dvdsrmuld 13270 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥(∥r‘(oppr‘𝑅))(((invr‘𝑆)‘𝑥)(.r‘(oppr‘𝑅))𝑥)) |
51 | 1, 45 | unitinvcl 13297 |
. . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
52 | 8, 51 | sylan 283 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
53 | | eqid 2177 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
54 | | eqid 2177 |
. . . . . . . 8
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) |
55 | 26, 53, 25, 54 | opprmulg 13248 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧
((invr‘𝑆)‘𝑥) ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → (((invr‘𝑆)‘𝑥)(.r‘(oppr‘𝑅))𝑥) = (𝑥(.r‘𝑅)((invr‘𝑆)‘𝑥))) |
56 | 24, 52, 42, 55 | syl3anc 1238 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (((invr‘𝑆)‘𝑥)(.r‘(oppr‘𝑅))𝑥) = (𝑥(.r‘𝑅)((invr‘𝑆)‘𝑥))) |
57 | | eqid 2177 |
. . . . . . . . 9
⊢
(.r‘𝑆) = (.r‘𝑆) |
58 | | eqid 2177 |
. . . . . . . . 9
⊢
(1r‘𝑆) = (1r‘𝑆) |
59 | 1, 45, 57, 58 | unitrinv 13301 |
. . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉) → (𝑥(.r‘𝑆)((invr‘𝑆)‘𝑥)) = (1r‘𝑆)) |
60 | 8, 59 | sylan 283 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (𝑥(.r‘𝑆)((invr‘𝑆)‘𝑥)) = (1r‘𝑆)) |
61 | 7, 53 | ressmulrg 12605 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) →
(.r‘𝑅) =
(.r‘𝑆)) |
62 | 23, 61 | mpdan 421 |
. . . . . . . . 9
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(.r‘𝑅) =
(.r‘𝑆)) |
63 | 62 | adantr 276 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (.r‘𝑅) = (.r‘𝑆)) |
64 | 63 | oveqd 5894 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (𝑥(.r‘𝑅)((invr‘𝑆)‘𝑥)) = (𝑥(.r‘𝑆)((invr‘𝑆)‘𝑥))) |
65 | 60, 64, 15 | 3eqtr4d 2220 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (𝑥(.r‘𝑅)((invr‘𝑆)‘𝑥)) = (1r‘𝑅)) |
66 | 56, 65 | eqtrd 2210 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (((invr‘𝑆)‘𝑥)(.r‘(oppr‘𝑅))𝑥) = (1r‘𝑅)) |
67 | 50, 66 | breqtrd 4031 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
68 | | subrguss.2 |
. . . . . . 7
⊢ 𝑈 = (Unit‘𝑅) |
69 | 68 | a1i 9 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Unit‘𝑅)) |
70 | | eqidd 2178 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(1r‘𝑅) =
(1r‘𝑅)) |
71 | | eqidd 2178 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(∥r‘𝑅) = (∥r‘𝑅)) |
72 | | eqidd 2178 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(oppr‘𝑅) = (oppr‘𝑅)) |
73 | | eqidd 2178 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅))) |
74 | | ringsrg 13229 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
75 | 23, 74 | syl 14 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ SRing) |
76 | 69, 70, 71, 72, 73, 75 | isunitd 13280 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ 𝑈 ↔ (𝑥(∥r‘𝑅)(1r‘𝑅) ∧ 𝑥(∥r‘(oppr‘𝑅))(1r‘𝑅)))) |
77 | 76 | adantr 276 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (𝑥 ∈ 𝑈 ↔ (𝑥(∥r‘𝑅)(1r‘𝑅) ∧ 𝑥(∥r‘(oppr‘𝑅))(1r‘𝑅)))) |
78 | 22, 67, 77 | mpbir2and 944 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑈) |
79 | 78 | ex 115 |
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ 𝑉 → 𝑥 ∈ 𝑈)) |
80 | 79 | ssrdv 3163 |
1
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) |