ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrguss GIF version

Theorem subrguss 14208
Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrguss.1 𝑆 = (𝑅s 𝐴)
subrguss.2 𝑈 = (Unit‘𝑅)
subrguss.3 𝑉 = (Unit‘𝑆)
Assertion
Ref Expression
subrguss (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)

Proof of Theorem subrguss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subrguss.3 . . . . . . . . 9 𝑉 = (Unit‘𝑆)
21a1i 9 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 = (Unit‘𝑆))
3 eqidd 2230 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑆) = (1r𝑆))
4 eqidd 2230 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑆) = (∥r𝑆))
5 eqidd 2230 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (oppr𝑆) = (oppr𝑆))
6 eqidd 2230 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆)))
7 subrguss.1 . . . . . . . . . 10 𝑆 = (𝑅s 𝐴)
87subrgring 14196 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
9 ringsrg 14018 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
108, 9syl 14 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ SRing)
112, 3, 4, 5, 6, 10isunitd 14078 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑉 ↔ (𝑥(∥r𝑆)(1r𝑆) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑆))))
1211simprbda 383 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑆)(1r𝑆))
13 eqid 2229 . . . . . . . 8 (1r𝑅) = (1r𝑅)
147, 13subrg1 14203 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
1514adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (1r𝑅) = (1r𝑆))
1612, 15breqtrrd 4111 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑆)(1r𝑅))
17 eqid 2229 . . . . . . . 8 (∥r𝑅) = (∥r𝑅)
18 eqid 2229 . . . . . . . 8 (∥r𝑆) = (∥r𝑆)
197, 17, 18subrgdvds 14207 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑆) ⊆ (∥r𝑅))
2019adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∥r𝑆) ⊆ (∥r𝑅))
2120ssbrd 4126 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(∥r𝑆)(1r𝑅) → 𝑥(∥r𝑅)(1r𝑅)))
2216, 21mpd 13 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑅)(1r𝑅))
23 subrgrcl 14198 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
2423adantr 276 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑅 ∈ Ring)
25 eqid 2229 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
26 eqid 2229 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
2725, 26opprbasg 14046 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
2824, 27syl 14 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑅) = (Base‘(oppr𝑅)))
29 eqidd 2230 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
3025opprring 14050 . . . . . . 7 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
31 ringsrg 14018 . . . . . . 7 ((oppr𝑅) ∈ Ring → (oppr𝑅) ∈ SRing)
3224, 30, 313syl 17 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (oppr𝑅) ∈ SRing)
33 eqidd 2230 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
347subrgbas 14202 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
3534adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝐴 = (Base‘𝑆))
3626subrgss 14194 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
3736adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝐴 ⊆ (Base‘𝑅))
3835, 37eqsstrrd 3261 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑆) ⊆ (Base‘𝑅))
39 eqidd 2230 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑆) = (Base‘𝑆))
401a1i 9 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑉 = (Unit‘𝑆))
4110adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑆 ∈ SRing)
42 simpr 110 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥𝑉)
4339, 40, 41, 42unitcld 14080 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑆))
4438, 43sseldd 3225 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
45 eqid 2229 . . . . . . . . 9 (invr𝑆) = (invr𝑆)
46 eqid 2229 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
471, 45, 46ringinvcl 14097 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
488, 47sylan 283 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
4938, 48sseldd 3225 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑅))
5028, 29, 32, 33, 44, 49dvdsrmuld 14068 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r‘(oppr𝑅))(((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥))
511, 45unitinvcl 14095 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
528, 51sylan 283 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
53 eqid 2229 . . . . . . . 8 (.r𝑅) = (.r𝑅)
54 eqid 2229 . . . . . . . 8 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
5526, 53, 25, 54opprmulg 14042 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((invr𝑆)‘𝑥) ∈ 𝑉𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invr𝑆)‘𝑥)))
5624, 52, 42, 55syl3anc 1271 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invr𝑆)‘𝑥)))
57 eqid 2229 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
58 eqid 2229 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
591, 45, 57, 58unitrinv 14099 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → (𝑥(.r𝑆)((invr𝑆)‘𝑥)) = (1r𝑆))
608, 59sylan 283 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑆)((invr𝑆)‘𝑥)) = (1r𝑆))
617, 53ressmulrg 13186 . . . . . . . . . 10 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
6223, 61mpdan 421 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
6362adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (.r𝑅) = (.r𝑆))
6463oveqd 6024 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑅)((invr𝑆)‘𝑥)) = (𝑥(.r𝑆)((invr𝑆)‘𝑥)))
6560, 64, 153eqtr4d 2272 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑅)((invr𝑆)‘𝑥)) = (1r𝑅))
6656, 65eqtrd 2262 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (1r𝑅))
6750, 66breqtrd 4109 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r‘(oppr𝑅))(1r𝑅))
68 subrguss.2 . . . . . . 7 𝑈 = (Unit‘𝑅)
6968a1i 9 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Unit‘𝑅))
70 eqidd 2230 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑅))
71 eqidd 2230 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑅) = (∥r𝑅))
72 eqidd 2230 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (oppr𝑅) = (oppr𝑅))
73 eqidd 2230 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
74 ringsrg 14018 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
7523, 74syl 14 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ SRing)
7669, 70, 71, 72, 73, 75isunitd 14078 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅))))
7776adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅))))
7822, 67, 77mpbir2and 950 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥𝑈)
7978ex 115 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑉𝑥𝑈))
8079ssrdv 3230 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wss 3197   class class class wbr 4083  cfv 5318  (class class class)co 6007  Basecbs 13040  s cress 13041  .rcmulr 13119  1rcur 13930  SRingcsrg 13934  Ringcrg 13967  opprcoppr 14038  rcdsr 14057  Unitcui 14058  invrcinvr 14092  SubRingcsubrg 14189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-tpos 6397  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-subg 13715  df-cmn 13831  df-abl 13832  df-mgp 13892  df-ur 13931  df-srg 13935  df-ring 13969  df-oppr 14039  df-dvdsr 14060  df-unit 14061  df-invr 14093  df-subrg 14191
This theorem is referenced by:  subrginv  14209  subrgdv  14210  subrgunit  14211  subrgugrp  14212
  Copyright terms: Public domain W3C validator