ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrguss GIF version

Theorem subrguss 13735
Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrguss.1 𝑆 = (𝑅s 𝐴)
subrguss.2 𝑈 = (Unit‘𝑅)
subrguss.3 𝑉 = (Unit‘𝑆)
Assertion
Ref Expression
subrguss (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)

Proof of Theorem subrguss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subrguss.3 . . . . . . . . 9 𝑉 = (Unit‘𝑆)
21a1i 9 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 = (Unit‘𝑆))
3 eqidd 2194 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑆) = (1r𝑆))
4 eqidd 2194 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑆) = (∥r𝑆))
5 eqidd 2194 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (oppr𝑆) = (oppr𝑆))
6 eqidd 2194 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆)))
7 subrguss.1 . . . . . . . . . 10 𝑆 = (𝑅s 𝐴)
87subrgring 13723 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
9 ringsrg 13546 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
108, 9syl 14 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ SRing)
112, 3, 4, 5, 6, 10isunitd 13605 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑉 ↔ (𝑥(∥r𝑆)(1r𝑆) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑆))))
1211simprbda 383 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑆)(1r𝑆))
13 eqid 2193 . . . . . . . 8 (1r𝑅) = (1r𝑅)
147, 13subrg1 13730 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
1514adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (1r𝑅) = (1r𝑆))
1612, 15breqtrrd 4058 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑆)(1r𝑅))
17 eqid 2193 . . . . . . . 8 (∥r𝑅) = (∥r𝑅)
18 eqid 2193 . . . . . . . 8 (∥r𝑆) = (∥r𝑆)
197, 17, 18subrgdvds 13734 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑆) ⊆ (∥r𝑅))
2019adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∥r𝑆) ⊆ (∥r𝑅))
2120ssbrd 4073 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(∥r𝑆)(1r𝑅) → 𝑥(∥r𝑅)(1r𝑅)))
2216, 21mpd 13 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑅)(1r𝑅))
23 subrgrcl 13725 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
2423adantr 276 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑅 ∈ Ring)
25 eqid 2193 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
26 eqid 2193 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
2725, 26opprbasg 13574 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
2824, 27syl 14 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑅) = (Base‘(oppr𝑅)))
29 eqidd 2194 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
3025opprring 13578 . . . . . . 7 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
31 ringsrg 13546 . . . . . . 7 ((oppr𝑅) ∈ Ring → (oppr𝑅) ∈ SRing)
3224, 30, 313syl 17 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (oppr𝑅) ∈ SRing)
33 eqidd 2194 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
347subrgbas 13729 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
3534adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝐴 = (Base‘𝑆))
3626subrgss 13721 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
3736adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝐴 ⊆ (Base‘𝑅))
3835, 37eqsstrrd 3217 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑆) ⊆ (Base‘𝑅))
39 eqidd 2194 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑆) = (Base‘𝑆))
401a1i 9 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑉 = (Unit‘𝑆))
4110adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑆 ∈ SRing)
42 simpr 110 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥𝑉)
4339, 40, 41, 42unitcld 13607 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑆))
4438, 43sseldd 3181 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
45 eqid 2193 . . . . . . . . 9 (invr𝑆) = (invr𝑆)
46 eqid 2193 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
471, 45, 46ringinvcl 13624 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
488, 47sylan 283 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
4938, 48sseldd 3181 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑅))
5028, 29, 32, 33, 44, 49dvdsrmuld 13595 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r‘(oppr𝑅))(((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥))
511, 45unitinvcl 13622 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
528, 51sylan 283 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
53 eqid 2193 . . . . . . . 8 (.r𝑅) = (.r𝑅)
54 eqid 2193 . . . . . . . 8 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
5526, 53, 25, 54opprmulg 13570 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((invr𝑆)‘𝑥) ∈ 𝑉𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invr𝑆)‘𝑥)))
5624, 52, 42, 55syl3anc 1249 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invr𝑆)‘𝑥)))
57 eqid 2193 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
58 eqid 2193 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
591, 45, 57, 58unitrinv 13626 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → (𝑥(.r𝑆)((invr𝑆)‘𝑥)) = (1r𝑆))
608, 59sylan 283 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑆)((invr𝑆)‘𝑥)) = (1r𝑆))
617, 53ressmulrg 12765 . . . . . . . . . 10 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
6223, 61mpdan 421 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
6362adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (.r𝑅) = (.r𝑆))
6463oveqd 5936 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑅)((invr𝑆)‘𝑥)) = (𝑥(.r𝑆)((invr𝑆)‘𝑥)))
6560, 64, 153eqtr4d 2236 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑅)((invr𝑆)‘𝑥)) = (1r𝑅))
6656, 65eqtrd 2226 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (1r𝑅))
6750, 66breqtrd 4056 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r‘(oppr𝑅))(1r𝑅))
68 subrguss.2 . . . . . . 7 𝑈 = (Unit‘𝑅)
6968a1i 9 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Unit‘𝑅))
70 eqidd 2194 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑅))
71 eqidd 2194 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑅) = (∥r𝑅))
72 eqidd 2194 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (oppr𝑅) = (oppr𝑅))
73 eqidd 2194 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
74 ringsrg 13546 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
7523, 74syl 14 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ SRing)
7669, 70, 71, 72, 73, 75isunitd 13605 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅))))
7776adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅))))
7822, 67, 77mpbir2and 946 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥𝑈)
7978ex 115 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑉𝑥𝑈))
8079ssrdv 3186 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wss 3154   class class class wbr 4030  cfv 5255  (class class class)co 5919  Basecbs 12621  s cress 12622  .rcmulr 12699  1rcur 13458  SRingcsrg 13462  Ringcrg 13495  opprcoppr 13566  rcdsr 13585  Unitcui 13586  invrcinvr 13619  SubRingcsubrg 13716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-tpos 6300  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-subg 13243  df-cmn 13359  df-abl 13360  df-mgp 13420  df-ur 13459  df-srg 13463  df-ring 13497  df-oppr 13567  df-dvdsr 13588  df-unit 13589  df-invr 13620  df-subrg 13718
This theorem is referenced by:  subrginv  13736  subrgdv  13737  subrgunit  13738  subrgugrp  13739
  Copyright terms: Public domain W3C validator