ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrguss GIF version

Theorem subrguss 13732
Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrguss.1 𝑆 = (𝑅s 𝐴)
subrguss.2 𝑈 = (Unit‘𝑅)
subrguss.3 𝑉 = (Unit‘𝑆)
Assertion
Ref Expression
subrguss (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)

Proof of Theorem subrguss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subrguss.3 . . . . . . . . 9 𝑉 = (Unit‘𝑆)
21a1i 9 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 = (Unit‘𝑆))
3 eqidd 2194 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑆) = (1r𝑆))
4 eqidd 2194 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑆) = (∥r𝑆))
5 eqidd 2194 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (oppr𝑆) = (oppr𝑆))
6 eqidd 2194 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆)))
7 subrguss.1 . . . . . . . . . 10 𝑆 = (𝑅s 𝐴)
87subrgring 13720 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
9 ringsrg 13543 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
108, 9syl 14 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ SRing)
112, 3, 4, 5, 6, 10isunitd 13602 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑉 ↔ (𝑥(∥r𝑆)(1r𝑆) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑆))))
1211simprbda 383 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑆)(1r𝑆))
13 eqid 2193 . . . . . . . 8 (1r𝑅) = (1r𝑅)
147, 13subrg1 13727 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
1514adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (1r𝑅) = (1r𝑆))
1612, 15breqtrrd 4057 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑆)(1r𝑅))
17 eqid 2193 . . . . . . . 8 (∥r𝑅) = (∥r𝑅)
18 eqid 2193 . . . . . . . 8 (∥r𝑆) = (∥r𝑆)
197, 17, 18subrgdvds 13731 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑆) ⊆ (∥r𝑅))
2019adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∥r𝑆) ⊆ (∥r𝑅))
2120ssbrd 4072 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(∥r𝑆)(1r𝑅) → 𝑥(∥r𝑅)(1r𝑅)))
2216, 21mpd 13 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑅)(1r𝑅))
23 subrgrcl 13722 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
2423adantr 276 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑅 ∈ Ring)
25 eqid 2193 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
26 eqid 2193 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
2725, 26opprbasg 13571 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
2824, 27syl 14 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑅) = (Base‘(oppr𝑅)))
29 eqidd 2194 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
3025opprring 13575 . . . . . . 7 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
31 ringsrg 13543 . . . . . . 7 ((oppr𝑅) ∈ Ring → (oppr𝑅) ∈ SRing)
3224, 30, 313syl 17 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (oppr𝑅) ∈ SRing)
33 eqidd 2194 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
347subrgbas 13726 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
3534adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝐴 = (Base‘𝑆))
3626subrgss 13718 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
3736adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝐴 ⊆ (Base‘𝑅))
3835, 37eqsstrrd 3216 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑆) ⊆ (Base‘𝑅))
39 eqidd 2194 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑆) = (Base‘𝑆))
401a1i 9 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑉 = (Unit‘𝑆))
4110adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑆 ∈ SRing)
42 simpr 110 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥𝑉)
4339, 40, 41, 42unitcld 13604 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑆))
4438, 43sseldd 3180 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
45 eqid 2193 . . . . . . . . 9 (invr𝑆) = (invr𝑆)
46 eqid 2193 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
471, 45, 46ringinvcl 13621 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
488, 47sylan 283 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
4938, 48sseldd 3180 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑅))
5028, 29, 32, 33, 44, 49dvdsrmuld 13592 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r‘(oppr𝑅))(((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥))
511, 45unitinvcl 13619 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
528, 51sylan 283 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
53 eqid 2193 . . . . . . . 8 (.r𝑅) = (.r𝑅)
54 eqid 2193 . . . . . . . 8 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
5526, 53, 25, 54opprmulg 13567 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((invr𝑆)‘𝑥) ∈ 𝑉𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invr𝑆)‘𝑥)))
5624, 52, 42, 55syl3anc 1249 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invr𝑆)‘𝑥)))
57 eqid 2193 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
58 eqid 2193 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
591, 45, 57, 58unitrinv 13623 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → (𝑥(.r𝑆)((invr𝑆)‘𝑥)) = (1r𝑆))
608, 59sylan 283 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑆)((invr𝑆)‘𝑥)) = (1r𝑆))
617, 53ressmulrg 12762 . . . . . . . . . 10 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
6223, 61mpdan 421 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
6362adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (.r𝑅) = (.r𝑆))
6463oveqd 5935 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑅)((invr𝑆)‘𝑥)) = (𝑥(.r𝑆)((invr𝑆)‘𝑥)))
6560, 64, 153eqtr4d 2236 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑅)((invr𝑆)‘𝑥)) = (1r𝑅))
6656, 65eqtrd 2226 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (1r𝑅))
6750, 66breqtrd 4055 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r‘(oppr𝑅))(1r𝑅))
68 subrguss.2 . . . . . . 7 𝑈 = (Unit‘𝑅)
6968a1i 9 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Unit‘𝑅))
70 eqidd 2194 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑅))
71 eqidd 2194 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑅) = (∥r𝑅))
72 eqidd 2194 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (oppr𝑅) = (oppr𝑅))
73 eqidd 2194 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
74 ringsrg 13543 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
7523, 74syl 14 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ SRing)
7669, 70, 71, 72, 73, 75isunitd 13602 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅))))
7776adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅))))
7822, 67, 77mpbir2and 946 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥𝑈)
7978ex 115 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑉𝑥𝑈))
8079ssrdv 3185 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wss 3153   class class class wbr 4029  cfv 5254  (class class class)co 5918  Basecbs 12618  s cress 12619  .rcmulr 12696  1rcur 13455  SRingcsrg 13459  Ringcrg 13492  opprcoppr 13563  rcdsr 13582  Unitcui 13583  invrcinvr 13616  SubRingcsubrg 13713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-oppr 13564  df-dvdsr 13585  df-unit 13586  df-invr 13617  df-subrg 13715
This theorem is referenced by:  subrginv  13733  subrgdv  13734  subrgunit  13735  subrgugrp  13736
  Copyright terms: Public domain W3C validator