ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrguss GIF version

Theorem subrguss 13868
Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrguss.1 𝑆 = (𝑅s 𝐴)
subrguss.2 𝑈 = (Unit‘𝑅)
subrguss.3 𝑉 = (Unit‘𝑆)
Assertion
Ref Expression
subrguss (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)

Proof of Theorem subrguss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subrguss.3 . . . . . . . . 9 𝑉 = (Unit‘𝑆)
21a1i 9 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 = (Unit‘𝑆))
3 eqidd 2197 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑆) = (1r𝑆))
4 eqidd 2197 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑆) = (∥r𝑆))
5 eqidd 2197 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (oppr𝑆) = (oppr𝑆))
6 eqidd 2197 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆)))
7 subrguss.1 . . . . . . . . . 10 𝑆 = (𝑅s 𝐴)
87subrgring 13856 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
9 ringsrg 13679 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
108, 9syl 14 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ SRing)
112, 3, 4, 5, 6, 10isunitd 13738 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑉 ↔ (𝑥(∥r𝑆)(1r𝑆) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑆))))
1211simprbda 383 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑆)(1r𝑆))
13 eqid 2196 . . . . . . . 8 (1r𝑅) = (1r𝑅)
147, 13subrg1 13863 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
1514adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (1r𝑅) = (1r𝑆))
1612, 15breqtrrd 4062 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑆)(1r𝑅))
17 eqid 2196 . . . . . . . 8 (∥r𝑅) = (∥r𝑅)
18 eqid 2196 . . . . . . . 8 (∥r𝑆) = (∥r𝑆)
197, 17, 18subrgdvds 13867 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑆) ⊆ (∥r𝑅))
2019adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∥r𝑆) ⊆ (∥r𝑅))
2120ssbrd 4077 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(∥r𝑆)(1r𝑅) → 𝑥(∥r𝑅)(1r𝑅)))
2216, 21mpd 13 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑅)(1r𝑅))
23 subrgrcl 13858 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
2423adantr 276 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑅 ∈ Ring)
25 eqid 2196 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
26 eqid 2196 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
2725, 26opprbasg 13707 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
2824, 27syl 14 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑅) = (Base‘(oppr𝑅)))
29 eqidd 2197 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
3025opprring 13711 . . . . . . 7 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
31 ringsrg 13679 . . . . . . 7 ((oppr𝑅) ∈ Ring → (oppr𝑅) ∈ SRing)
3224, 30, 313syl 17 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (oppr𝑅) ∈ SRing)
33 eqidd 2197 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
347subrgbas 13862 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
3534adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝐴 = (Base‘𝑆))
3626subrgss 13854 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
3736adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝐴 ⊆ (Base‘𝑅))
3835, 37eqsstrrd 3221 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑆) ⊆ (Base‘𝑅))
39 eqidd 2197 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑆) = (Base‘𝑆))
401a1i 9 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑉 = (Unit‘𝑆))
4110adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑆 ∈ SRing)
42 simpr 110 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥𝑉)
4339, 40, 41, 42unitcld 13740 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑆))
4438, 43sseldd 3185 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
45 eqid 2196 . . . . . . . . 9 (invr𝑆) = (invr𝑆)
46 eqid 2196 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
471, 45, 46ringinvcl 13757 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
488, 47sylan 283 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
4938, 48sseldd 3185 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑅))
5028, 29, 32, 33, 44, 49dvdsrmuld 13728 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r‘(oppr𝑅))(((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥))
511, 45unitinvcl 13755 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
528, 51sylan 283 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
53 eqid 2196 . . . . . . . 8 (.r𝑅) = (.r𝑅)
54 eqid 2196 . . . . . . . 8 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
5526, 53, 25, 54opprmulg 13703 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((invr𝑆)‘𝑥) ∈ 𝑉𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invr𝑆)‘𝑥)))
5624, 52, 42, 55syl3anc 1249 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invr𝑆)‘𝑥)))
57 eqid 2196 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
58 eqid 2196 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
591, 45, 57, 58unitrinv 13759 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → (𝑥(.r𝑆)((invr𝑆)‘𝑥)) = (1r𝑆))
608, 59sylan 283 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑆)((invr𝑆)‘𝑥)) = (1r𝑆))
617, 53ressmulrg 12847 . . . . . . . . . 10 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
6223, 61mpdan 421 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
6362adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (.r𝑅) = (.r𝑆))
6463oveqd 5942 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑅)((invr𝑆)‘𝑥)) = (𝑥(.r𝑆)((invr𝑆)‘𝑥)))
6560, 64, 153eqtr4d 2239 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑅)((invr𝑆)‘𝑥)) = (1r𝑅))
6656, 65eqtrd 2229 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (1r𝑅))
6750, 66breqtrd 4060 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r‘(oppr𝑅))(1r𝑅))
68 subrguss.2 . . . . . . 7 𝑈 = (Unit‘𝑅)
6968a1i 9 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Unit‘𝑅))
70 eqidd 2197 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑅))
71 eqidd 2197 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑅) = (∥r𝑅))
72 eqidd 2197 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (oppr𝑅) = (oppr𝑅))
73 eqidd 2197 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
74 ringsrg 13679 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
7523, 74syl 14 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ SRing)
7669, 70, 71, 72, 73, 75isunitd 13738 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅))))
7776adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅))))
7822, 67, 77mpbir2and 946 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥𝑈)
7978ex 115 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑉𝑥𝑈))
8079ssrdv 3190 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wss 3157   class class class wbr 4034  cfv 5259  (class class class)co 5925  Basecbs 12703  s cress 12704  .rcmulr 12781  1rcur 13591  SRingcsrg 13595  Ringcrg 13628  opprcoppr 13699  rcdsr 13718  Unitcui 13719  invrcinvr 13752  SubRingcsubrg 13849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-subg 13376  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722  df-invr 13753  df-subrg 13851
This theorem is referenced by:  subrginv  13869  subrgdv  13870  subrgunit  13871  subrgugrp  13872
  Copyright terms: Public domain W3C validator