ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrguss GIF version

Theorem subrguss 13362
Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrguss.1 𝑆 = (𝑅s 𝐴)
subrguss.2 𝑈 = (Unit‘𝑅)
subrguss.3 𝑉 = (Unit‘𝑆)
Assertion
Ref Expression
subrguss (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)

Proof of Theorem subrguss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subrguss.3 . . . . . . . . 9 𝑉 = (Unit‘𝑆)
21a1i 9 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 = (Unit‘𝑆))
3 eqidd 2178 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑆) = (1r𝑆))
4 eqidd 2178 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑆) = (∥r𝑆))
5 eqidd 2178 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (oppr𝑆) = (oppr𝑆))
6 eqidd 2178 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆)))
7 subrguss.1 . . . . . . . . . 10 𝑆 = (𝑅s 𝐴)
87subrgring 13350 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
9 ringsrg 13229 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
108, 9syl 14 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ SRing)
112, 3, 4, 5, 6, 10isunitd 13280 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑉 ↔ (𝑥(∥r𝑆)(1r𝑆) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑆))))
1211simprbda 383 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑆)(1r𝑆))
13 eqid 2177 . . . . . . . 8 (1r𝑅) = (1r𝑅)
147, 13subrg1 13357 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
1514adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (1r𝑅) = (1r𝑆))
1612, 15breqtrrd 4033 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑆)(1r𝑅))
17 eqid 2177 . . . . . . . 8 (∥r𝑅) = (∥r𝑅)
18 eqid 2177 . . . . . . . 8 (∥r𝑆) = (∥r𝑆)
197, 17, 18subrgdvds 13361 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑆) ⊆ (∥r𝑅))
2019adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∥r𝑆) ⊆ (∥r𝑅))
2120ssbrd 4048 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(∥r𝑆)(1r𝑅) → 𝑥(∥r𝑅)(1r𝑅)))
2216, 21mpd 13 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑅)(1r𝑅))
23 subrgrcl 13352 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
2423adantr 276 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑅 ∈ Ring)
25 eqid 2177 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
26 eqid 2177 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
2725, 26opprbasg 13252 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
2824, 27syl 14 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑅) = (Base‘(oppr𝑅)))
29 eqidd 2178 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
3025opprring 13254 . . . . . . 7 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
31 ringsrg 13229 . . . . . . 7 ((oppr𝑅) ∈ Ring → (oppr𝑅) ∈ SRing)
3224, 30, 313syl 17 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (oppr𝑅) ∈ SRing)
33 eqidd 2178 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
347subrgbas 13356 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
3534adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝐴 = (Base‘𝑆))
3626subrgss 13348 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
3736adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝐴 ⊆ (Base‘𝑅))
3835, 37eqsstrrd 3194 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑆) ⊆ (Base‘𝑅))
39 eqidd 2178 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑆) = (Base‘𝑆))
401a1i 9 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑉 = (Unit‘𝑆))
4110adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑆 ∈ SRing)
42 simpr 110 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥𝑉)
4339, 40, 41, 42unitcld 13282 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑆))
4438, 43sseldd 3158 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
45 eqid 2177 . . . . . . . . 9 (invr𝑆) = (invr𝑆)
46 eqid 2177 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
471, 45, 46ringinvcl 13299 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
488, 47sylan 283 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
4938, 48sseldd 3158 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑅))
5028, 29, 32, 33, 44, 49dvdsrmuld 13270 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r‘(oppr𝑅))(((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥))
511, 45unitinvcl 13297 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
528, 51sylan 283 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
53 eqid 2177 . . . . . . . 8 (.r𝑅) = (.r𝑅)
54 eqid 2177 . . . . . . . 8 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
5526, 53, 25, 54opprmulg 13248 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((invr𝑆)‘𝑥) ∈ 𝑉𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invr𝑆)‘𝑥)))
5624, 52, 42, 55syl3anc 1238 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invr𝑆)‘𝑥)))
57 eqid 2177 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
58 eqid 2177 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
591, 45, 57, 58unitrinv 13301 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → (𝑥(.r𝑆)((invr𝑆)‘𝑥)) = (1r𝑆))
608, 59sylan 283 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑆)((invr𝑆)‘𝑥)) = (1r𝑆))
617, 53ressmulrg 12605 . . . . . . . . . 10 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
6223, 61mpdan 421 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
6362adantr 276 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (.r𝑅) = (.r𝑆))
6463oveqd 5894 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑅)((invr𝑆)‘𝑥)) = (𝑥(.r𝑆)((invr𝑆)‘𝑥)))
6560, 64, 153eqtr4d 2220 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑅)((invr𝑆)‘𝑥)) = (1r𝑅))
6656, 65eqtrd 2210 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (1r𝑅))
6750, 66breqtrd 4031 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r‘(oppr𝑅))(1r𝑅))
68 subrguss.2 . . . . . . 7 𝑈 = (Unit‘𝑅)
6968a1i 9 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Unit‘𝑅))
70 eqidd 2178 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑅))
71 eqidd 2178 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑅) = (∥r𝑅))
72 eqidd 2178 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (oppr𝑅) = (oppr𝑅))
73 eqidd 2178 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
74 ringsrg 13229 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
7523, 74syl 14 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ SRing)
7669, 70, 71, 72, 73, 75isunitd 13280 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅))))
7776adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅))))
7822, 67, 77mpbir2and 944 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥𝑈)
7978ex 115 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑉𝑥𝑈))
8079ssrdv 3163 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wss 3131   class class class wbr 4005  cfv 5218  (class class class)co 5877  Basecbs 12464  s cress 12465  .rcmulr 12539  1rcur 13147  SRingcsrg 13151  Ringcrg 13184  opprcoppr 13244  rcdsr 13260  Unitcui 13261  invrcinvr 13294  SubRingcsubrg 13343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-tpos 6248  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-mulr 12552  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-subg 13035  df-cmn 13095  df-abl 13096  df-mgp 13136  df-ur 13148  df-srg 13152  df-ring 13186  df-oppr 13245  df-dvdsr 13263  df-unit 13264  df-invr 13295  df-subrg 13345
This theorem is referenced by:  subrginv  13363  subrgdv  13364  subrgunit  13365  subrgugrp  13366
  Copyright terms: Public domain W3C validator