ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodfopnelem1 GIF version

Theorem lmodfopnelem1 13823
Description: Lemma 1 for lmodfopne 13825. (Contributed by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t · = ( ·sf𝑊)
lmodfopne.a + = (+𝑓𝑊)
lmodfopne.v 𝑉 = (Base‘𝑊)
lmodfopne.s 𝑆 = (Scalar‘𝑊)
lmodfopne.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
lmodfopnelem1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)

Proof of Theorem lmodfopnelem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lmodfopne.v . . . 4 𝑉 = (Base‘𝑊)
2 lmodfopne.a . . . 4 + = (+𝑓𝑊)
31, 2plusffng 12951 . . 3 (𝑊 ∈ LMod → + Fn (𝑉 × 𝑉))
4 lmodfopne.s . . . 4 𝑆 = (Scalar‘𝑊)
5 lmodfopne.k . . . 4 𝐾 = (Base‘𝑆)
6 lmodfopne.t . . . 4 · = ( ·sf𝑊)
71, 4, 5, 6scaffng 13808 . . 3 (𝑊 ∈ LMod → · Fn (𝐾 × 𝑉))
8 fneq1 5343 . . . . . . . . . 10 ( + = · → ( + Fn (𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉)))
9 fndmu 5356 . . . . . . . . . . 11 (( · Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉))
109ex 115 . . . . . . . . . 10 ( · Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
118, 10biimtrdi 163 . . . . . . . . 9 ( + = · → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1211com13 80 . . . . . . . 8 ( · Fn (𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1312impcom 125 . . . . . . 7 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
14 lmodgrp 13793 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
15 eqid 2193 . . . . . . . . . . . 12 (0g𝑊) = (0g𝑊)
161, 15grpidcl 13104 . . . . . . . . . . 11 (𝑊 ∈ Grp → (0g𝑊) ∈ 𝑉)
17 elex2 2776 . . . . . . . . . . 11 ((0g𝑊) ∈ 𝑉 → ∃𝑤 𝑤𝑉)
1814, 16, 173syl 17 . . . . . . . . . 10 (𝑊 ∈ LMod → ∃𝑤 𝑤𝑉)
19 xp11m 5105 . . . . . . . . . 10 ((∃𝑤 𝑤𝑉 ∧ ∃𝑤 𝑤𝑉) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
2018, 18, 19syl2anc 411 . . . . . . . . 9 (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
2120simprbda 383 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾)
2221expcom 116 . . . . . . 7 ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾))
2313, 22syl6 33 . . . . . 6 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾)))
2423com23 78 . . . . 5 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾)))
2524ex 115 . . . 4 ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))))
2625com3r 79 . . 3 (𝑊 ∈ LMod → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → ( + = ·𝑉 = 𝐾))))
273, 7, 26mp2d 47 . 2 (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))
2827imp 124 1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164   × cxp 4658   Fn wfn 5250  cfv 5255  Basecbs 12621  Scalarcsca 12701  0gc0g 12870  +𝑓cplusf 12939  Grpcgrp 13075  LModclmod 13786   ·sf cscaf 13787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-0g 12872  df-plusf 12941  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-lmod 13788  df-scaf 13789
This theorem is referenced by:  lmodfopnelem2  13824
  Copyright terms: Public domain W3C validator