| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodfopnelem1 | GIF version | ||
| Description: Lemma 1 for lmodfopne 13958. (Contributed by AV, 2-Oct-2021.) |
| Ref | Expression |
|---|---|
| lmodfopne.t | ⊢ · = ( ·sf ‘𝑊) |
| lmodfopne.a | ⊢ + = (+𝑓‘𝑊) |
| lmodfopne.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodfopne.s | ⊢ 𝑆 = (Scalar‘𝑊) |
| lmodfopne.k | ⊢ 𝐾 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| lmodfopnelem1 | ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodfopne.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lmodfopne.a | . . . 4 ⊢ + = (+𝑓‘𝑊) | |
| 3 | 1, 2 | plusffng 13067 | . . 3 ⊢ (𝑊 ∈ LMod → + Fn (𝑉 × 𝑉)) |
| 4 | lmodfopne.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑊) | |
| 5 | lmodfopne.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
| 6 | lmodfopne.t | . . . 4 ⊢ · = ( ·sf ‘𝑊) | |
| 7 | 1, 4, 5, 6 | scaffng 13941 | . . 3 ⊢ (𝑊 ∈ LMod → · Fn (𝐾 × 𝑉)) |
| 8 | fneq1 5347 | . . . . . . . . . 10 ⊢ ( + = · → ( + Fn (𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉))) | |
| 9 | fndmu 5362 | . . . . . . . . . . 11 ⊢ (( · Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉)) | |
| 10 | 9 | ex 115 | . . . . . . . . . 10 ⊢ ( · Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
| 11 | 8, 10 | biimtrdi 163 | . . . . . . . . 9 ⊢ ( + = · → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
| 12 | 11 | com13 80 | . . . . . . . 8 ⊢ ( · Fn (𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
| 13 | 12 | impcom 125 | . . . . . . 7 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
| 14 | lmodgrp 13926 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 15 | eqid 2196 | . . . . . . . . . . . 12 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 16 | 1, 15 | grpidcl 13231 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ Grp → (0g‘𝑊) ∈ 𝑉) |
| 17 | elex2 2779 | . . . . . . . . . . 11 ⊢ ((0g‘𝑊) ∈ 𝑉 → ∃𝑤 𝑤 ∈ 𝑉) | |
| 18 | 14, 16, 17 | 3syl 17 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → ∃𝑤 𝑤 ∈ 𝑉) |
| 19 | xp11m 5109 | . . . . . . . . . 10 ⊢ ((∃𝑤 𝑤 ∈ 𝑉 ∧ ∃𝑤 𝑤 ∈ 𝑉) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) | |
| 20 | 18, 18, 19 | syl2anc 411 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) |
| 21 | 20 | simprbda 383 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾) |
| 22 | 21 | expcom 116 | . . . . . . 7 ⊢ ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾)) |
| 23 | 13, 22 | syl6 33 | . . . . . 6 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾))) |
| 24 | 23 | com23 78 | . . . . 5 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾))) |
| 25 | 24 | ex 115 | . . . 4 ⊢ ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)))) |
| 26 | 25 | com3r 79 | . . 3 ⊢ (𝑊 ∈ LMod → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾)))) |
| 27 | 3, 7, 26 | mp2d 47 | . 2 ⊢ (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)) |
| 28 | 27 | imp 124 | 1 ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 × cxp 4662 Fn wfn 5254 ‘cfv 5259 Basecbs 12703 Scalarcsca 12783 0gc0g 12958 +𝑓cplusf 13055 Grpcgrp 13202 LModclmod 13919 ·sf cscaf 13920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-0g 12960 df-plusf 13057 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-lmod 13921 df-scaf 13922 |
| This theorem is referenced by: lmodfopnelem2 13957 |
| Copyright terms: Public domain | W3C validator |