![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodfopnelem1 | GIF version |
Description: Lemma 1 for lmodfopne 13642. (Contributed by AV, 2-Oct-2021.) |
Ref | Expression |
---|---|
lmodfopne.t | ⊢ · = ( ·sf ‘𝑊) |
lmodfopne.a | ⊢ + = (+𝑓‘𝑊) |
lmodfopne.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodfopne.s | ⊢ 𝑆 = (Scalar‘𝑊) |
lmodfopne.k | ⊢ 𝐾 = (Base‘𝑆) |
Ref | Expression |
---|---|
lmodfopnelem1 | ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodfopne.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lmodfopne.a | . . . 4 ⊢ + = (+𝑓‘𝑊) | |
3 | 1, 2 | plusffng 12841 | . . 3 ⊢ (𝑊 ∈ LMod → + Fn (𝑉 × 𝑉)) |
4 | lmodfopne.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑊) | |
5 | lmodfopne.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
6 | lmodfopne.t | . . . 4 ⊢ · = ( ·sf ‘𝑊) | |
7 | 1, 4, 5, 6 | scaffng 13625 | . . 3 ⊢ (𝑊 ∈ LMod → · Fn (𝐾 × 𝑉)) |
8 | fneq1 5323 | . . . . . . . . . 10 ⊢ ( + = · → ( + Fn (𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉))) | |
9 | fndmu 5336 | . . . . . . . . . . 11 ⊢ (( · Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉)) | |
10 | 9 | ex 115 | . . . . . . . . . 10 ⊢ ( · Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
11 | 8, 10 | biimtrdi 163 | . . . . . . . . 9 ⊢ ( + = · → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
12 | 11 | com13 80 | . . . . . . . 8 ⊢ ( · Fn (𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
13 | 12 | impcom 125 | . . . . . . 7 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
14 | lmodgrp 13610 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
15 | eqid 2189 | . . . . . . . . . . . 12 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
16 | 1, 15 | grpidcl 12973 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ Grp → (0g‘𝑊) ∈ 𝑉) |
17 | elex2 2768 | . . . . . . . . . . 11 ⊢ ((0g‘𝑊) ∈ 𝑉 → ∃𝑤 𝑤 ∈ 𝑉) | |
18 | 14, 16, 17 | 3syl 17 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → ∃𝑤 𝑤 ∈ 𝑉) |
19 | xp11m 5085 | . . . . . . . . . 10 ⊢ ((∃𝑤 𝑤 ∈ 𝑉 ∧ ∃𝑤 𝑤 ∈ 𝑉) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) | |
20 | 18, 18, 19 | syl2anc 411 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) |
21 | 20 | simprbda 383 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾) |
22 | 21 | expcom 116 | . . . . . . 7 ⊢ ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾)) |
23 | 13, 22 | syl6 33 | . . . . . 6 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾))) |
24 | 23 | com23 78 | . . . . 5 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾))) |
25 | 24 | ex 115 | . . . 4 ⊢ ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)))) |
26 | 25 | com3r 79 | . . 3 ⊢ (𝑊 ∈ LMod → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾)))) |
27 | 3, 7, 26 | mp2d 47 | . 2 ⊢ (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)) |
28 | 27 | imp 124 | 1 ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2160 × cxp 4642 Fn wfn 5230 ‘cfv 5235 Basecbs 12512 Scalarcsca 12592 0gc0g 12761 +𝑓cplusf 12829 Grpcgrp 12945 LModclmod 13603 ·sf cscaf 13604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-cnex 7932 ax-resscn 7933 ax-1re 7935 ax-addrcl 7938 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-1st 6165 df-2nd 6166 df-inn 8950 df-2 9008 df-3 9009 df-4 9010 df-5 9011 df-6 9012 df-ndx 12515 df-slot 12516 df-base 12518 df-plusg 12602 df-mulr 12603 df-sca 12605 df-vsca 12606 df-0g 12763 df-plusf 12831 df-mgm 12832 df-sgrp 12865 df-mnd 12878 df-grp 12948 df-lmod 13605 df-scaf 13606 |
This theorem is referenced by: lmodfopnelem2 13641 |
Copyright terms: Public domain | W3C validator |