ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodfopnelem1 GIF version

Theorem lmodfopnelem1 13820
Description: Lemma 1 for lmodfopne 13822. (Contributed by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t · = ( ·sf𝑊)
lmodfopne.a + = (+𝑓𝑊)
lmodfopne.v 𝑉 = (Base‘𝑊)
lmodfopne.s 𝑆 = (Scalar‘𝑊)
lmodfopne.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
lmodfopnelem1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)

Proof of Theorem lmodfopnelem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lmodfopne.v . . . 4 𝑉 = (Base‘𝑊)
2 lmodfopne.a . . . 4 + = (+𝑓𝑊)
31, 2plusffng 12948 . . 3 (𝑊 ∈ LMod → + Fn (𝑉 × 𝑉))
4 lmodfopne.s . . . 4 𝑆 = (Scalar‘𝑊)
5 lmodfopne.k . . . 4 𝐾 = (Base‘𝑆)
6 lmodfopne.t . . . 4 · = ( ·sf𝑊)
71, 4, 5, 6scaffng 13805 . . 3 (𝑊 ∈ LMod → · Fn (𝐾 × 𝑉))
8 fneq1 5342 . . . . . . . . . 10 ( + = · → ( + Fn (𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉)))
9 fndmu 5355 . . . . . . . . . . 11 (( · Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉))
109ex 115 . . . . . . . . . 10 ( · Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
118, 10biimtrdi 163 . . . . . . . . 9 ( + = · → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1211com13 80 . . . . . . . 8 ( · Fn (𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1312impcom 125 . . . . . . 7 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
14 lmodgrp 13790 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
15 eqid 2193 . . . . . . . . . . . 12 (0g𝑊) = (0g𝑊)
161, 15grpidcl 13101 . . . . . . . . . . 11 (𝑊 ∈ Grp → (0g𝑊) ∈ 𝑉)
17 elex2 2776 . . . . . . . . . . 11 ((0g𝑊) ∈ 𝑉 → ∃𝑤 𝑤𝑉)
1814, 16, 173syl 17 . . . . . . . . . 10 (𝑊 ∈ LMod → ∃𝑤 𝑤𝑉)
19 xp11m 5104 . . . . . . . . . 10 ((∃𝑤 𝑤𝑉 ∧ ∃𝑤 𝑤𝑉) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
2018, 18, 19syl2anc 411 . . . . . . . . 9 (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
2120simprbda 383 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾)
2221expcom 116 . . . . . . 7 ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾))
2313, 22syl6 33 . . . . . 6 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾)))
2423com23 78 . . . . 5 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾)))
2524ex 115 . . . 4 ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))))
2625com3r 79 . . 3 (𝑊 ∈ LMod → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → ( + = ·𝑉 = 𝐾))))
273, 7, 26mp2d 47 . 2 (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))
2827imp 124 1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164   × cxp 4657   Fn wfn 5249  cfv 5254  Basecbs 12618  Scalarcsca 12698  0gc0g 12867  +𝑓cplusf 12936  Grpcgrp 13072  LModclmod 13783   ·sf cscaf 13784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-0g 12869  df-plusf 12938  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-lmod 13785  df-scaf 13786
This theorem is referenced by:  lmodfopnelem2  13821
  Copyright terms: Public domain W3C validator