| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodfopnelem1 | GIF version | ||
| Description: Lemma 1 for lmodfopne 14284. (Contributed by AV, 2-Oct-2021.) |
| Ref | Expression |
|---|---|
| lmodfopne.t | ⊢ · = ( ·sf ‘𝑊) |
| lmodfopne.a | ⊢ + = (+𝑓‘𝑊) |
| lmodfopne.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodfopne.s | ⊢ 𝑆 = (Scalar‘𝑊) |
| lmodfopne.k | ⊢ 𝐾 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| lmodfopnelem1 | ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodfopne.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lmodfopne.a | . . . 4 ⊢ + = (+𝑓‘𝑊) | |
| 3 | 1, 2 | plusffng 13393 | . . 3 ⊢ (𝑊 ∈ LMod → + Fn (𝑉 × 𝑉)) |
| 4 | lmodfopne.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑊) | |
| 5 | lmodfopne.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
| 6 | lmodfopne.t | . . . 4 ⊢ · = ( ·sf ‘𝑊) | |
| 7 | 1, 4, 5, 6 | scaffng 14267 | . . 3 ⊢ (𝑊 ∈ LMod → · Fn (𝐾 × 𝑉)) |
| 8 | fneq1 5408 | . . . . . . . . . 10 ⊢ ( + = · → ( + Fn (𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉))) | |
| 9 | fndmu 5423 | . . . . . . . . . . 11 ⊢ (( · Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉)) | |
| 10 | 9 | ex 115 | . . . . . . . . . 10 ⊢ ( · Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
| 11 | 8, 10 | biimtrdi 163 | . . . . . . . . 9 ⊢ ( + = · → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
| 12 | 11 | com13 80 | . . . . . . . 8 ⊢ ( · Fn (𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
| 13 | 12 | impcom 125 | . . . . . . 7 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
| 14 | lmodgrp 14252 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 15 | eqid 2229 | . . . . . . . . . . . 12 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 16 | 1, 15 | grpidcl 13557 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ Grp → (0g‘𝑊) ∈ 𝑉) |
| 17 | elex2 2816 | . . . . . . . . . . 11 ⊢ ((0g‘𝑊) ∈ 𝑉 → ∃𝑤 𝑤 ∈ 𝑉) | |
| 18 | 14, 16, 17 | 3syl 17 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → ∃𝑤 𝑤 ∈ 𝑉) |
| 19 | xp11m 5166 | . . . . . . . . . 10 ⊢ ((∃𝑤 𝑤 ∈ 𝑉 ∧ ∃𝑤 𝑤 ∈ 𝑉) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) | |
| 20 | 18, 18, 19 | syl2anc 411 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) |
| 21 | 20 | simprbda 383 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾) |
| 22 | 21 | expcom 116 | . . . . . . 7 ⊢ ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾)) |
| 23 | 13, 22 | syl6 33 | . . . . . 6 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾))) |
| 24 | 23 | com23 78 | . . . . 5 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾))) |
| 25 | 24 | ex 115 | . . . 4 ⊢ ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)))) |
| 26 | 25 | com3r 79 | . . 3 ⊢ (𝑊 ∈ LMod → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾)))) |
| 27 | 3, 7, 26 | mp2d 47 | . 2 ⊢ (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)) |
| 28 | 27 | imp 124 | 1 ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 × cxp 4716 Fn wfn 5312 ‘cfv 5317 Basecbs 13027 Scalarcsca 13108 0gc0g 13284 +𝑓cplusf 13381 Grpcgrp 13528 LModclmod 14245 ·sf cscaf 14246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-mulr 13119 df-sca 13121 df-vsca 13122 df-0g 13286 df-plusf 13383 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-lmod 14247 df-scaf 14248 |
| This theorem is referenced by: lmodfopnelem2 14283 |
| Copyright terms: Public domain | W3C validator |