ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodfopnelem1 GIF version

Theorem lmodfopnelem1 13880
Description: Lemma 1 for lmodfopne 13882. (Contributed by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t · = ( ·sf𝑊)
lmodfopne.a + = (+𝑓𝑊)
lmodfopne.v 𝑉 = (Base‘𝑊)
lmodfopne.s 𝑆 = (Scalar‘𝑊)
lmodfopne.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
lmodfopnelem1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)

Proof of Theorem lmodfopnelem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lmodfopne.v . . . 4 𝑉 = (Base‘𝑊)
2 lmodfopne.a . . . 4 + = (+𝑓𝑊)
31, 2plusffng 13008 . . 3 (𝑊 ∈ LMod → + Fn (𝑉 × 𝑉))
4 lmodfopne.s . . . 4 𝑆 = (Scalar‘𝑊)
5 lmodfopne.k . . . 4 𝐾 = (Base‘𝑆)
6 lmodfopne.t . . . 4 · = ( ·sf𝑊)
71, 4, 5, 6scaffng 13865 . . 3 (𝑊 ∈ LMod → · Fn (𝐾 × 𝑉))
8 fneq1 5346 . . . . . . . . . 10 ( + = · → ( + Fn (𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉)))
9 fndmu 5359 . . . . . . . . . . 11 (( · Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉))
109ex 115 . . . . . . . . . 10 ( · Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
118, 10biimtrdi 163 . . . . . . . . 9 ( + = · → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1211com13 80 . . . . . . . 8 ( · Fn (𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1312impcom 125 . . . . . . 7 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
14 lmodgrp 13850 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
15 eqid 2196 . . . . . . . . . . . 12 (0g𝑊) = (0g𝑊)
161, 15grpidcl 13161 . . . . . . . . . . 11 (𝑊 ∈ Grp → (0g𝑊) ∈ 𝑉)
17 elex2 2779 . . . . . . . . . . 11 ((0g𝑊) ∈ 𝑉 → ∃𝑤 𝑤𝑉)
1814, 16, 173syl 17 . . . . . . . . . 10 (𝑊 ∈ LMod → ∃𝑤 𝑤𝑉)
19 xp11m 5108 . . . . . . . . . 10 ((∃𝑤 𝑤𝑉 ∧ ∃𝑤 𝑤𝑉) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
2018, 18, 19syl2anc 411 . . . . . . . . 9 (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
2120simprbda 383 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾)
2221expcom 116 . . . . . . 7 ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾))
2313, 22syl6 33 . . . . . 6 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾)))
2423com23 78 . . . . 5 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾)))
2524ex 115 . . . 4 ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))))
2625com3r 79 . . 3 (𝑊 ∈ LMod → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → ( + = ·𝑉 = 𝐾))))
273, 7, 26mp2d 47 . 2 (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))
2827imp 124 1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167   × cxp 4661   Fn wfn 5253  cfv 5258  Basecbs 12678  Scalarcsca 12758  0gc0g 12927  +𝑓cplusf 12996  Grpcgrp 13132  LModclmod 13843   ·sf cscaf 13844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-0g 12929  df-plusf 12998  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-lmod 13845  df-scaf 13846
This theorem is referenced by:  lmodfopnelem2  13881
  Copyright terms: Public domain W3C validator