| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodfopnelem1 | GIF version | ||
| Description: Lemma 1 for lmodfopne 14163. (Contributed by AV, 2-Oct-2021.) |
| Ref | Expression |
|---|---|
| lmodfopne.t | ⊢ · = ( ·sf ‘𝑊) |
| lmodfopne.a | ⊢ + = (+𝑓‘𝑊) |
| lmodfopne.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodfopne.s | ⊢ 𝑆 = (Scalar‘𝑊) |
| lmodfopne.k | ⊢ 𝐾 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| lmodfopnelem1 | ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodfopne.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lmodfopne.a | . . . 4 ⊢ + = (+𝑓‘𝑊) | |
| 3 | 1, 2 | plusffng 13272 | . . 3 ⊢ (𝑊 ∈ LMod → + Fn (𝑉 × 𝑉)) |
| 4 | lmodfopne.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑊) | |
| 5 | lmodfopne.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
| 6 | lmodfopne.t | . . . 4 ⊢ · = ( ·sf ‘𝑊) | |
| 7 | 1, 4, 5, 6 | scaffng 14146 | . . 3 ⊢ (𝑊 ∈ LMod → · Fn (𝐾 × 𝑉)) |
| 8 | fneq1 5371 | . . . . . . . . . 10 ⊢ ( + = · → ( + Fn (𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉))) | |
| 9 | fndmu 5386 | . . . . . . . . . . 11 ⊢ (( · Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉)) | |
| 10 | 9 | ex 115 | . . . . . . . . . 10 ⊢ ( · Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
| 11 | 8, 10 | biimtrdi 163 | . . . . . . . . 9 ⊢ ( + = · → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
| 12 | 11 | com13 80 | . . . . . . . 8 ⊢ ( · Fn (𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
| 13 | 12 | impcom 125 | . . . . . . 7 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
| 14 | lmodgrp 14131 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 15 | eqid 2206 | . . . . . . . . . . . 12 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 16 | 1, 15 | grpidcl 13436 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ Grp → (0g‘𝑊) ∈ 𝑉) |
| 17 | elex2 2790 | . . . . . . . . . . 11 ⊢ ((0g‘𝑊) ∈ 𝑉 → ∃𝑤 𝑤 ∈ 𝑉) | |
| 18 | 14, 16, 17 | 3syl 17 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → ∃𝑤 𝑤 ∈ 𝑉) |
| 19 | xp11m 5130 | . . . . . . . . . 10 ⊢ ((∃𝑤 𝑤 ∈ 𝑉 ∧ ∃𝑤 𝑤 ∈ 𝑉) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) | |
| 20 | 18, 18, 19 | syl2anc 411 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) |
| 21 | 20 | simprbda 383 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾) |
| 22 | 21 | expcom 116 | . . . . . . 7 ⊢ ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾)) |
| 23 | 13, 22 | syl6 33 | . . . . . 6 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾))) |
| 24 | 23 | com23 78 | . . . . 5 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾))) |
| 25 | 24 | ex 115 | . . . 4 ⊢ ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)))) |
| 26 | 25 | com3r 79 | . . 3 ⊢ (𝑊 ∈ LMod → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾)))) |
| 27 | 3, 7, 26 | mp2d 47 | . 2 ⊢ (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)) |
| 28 | 27 | imp 124 | 1 ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 × cxp 4681 Fn wfn 5275 ‘cfv 5280 Basecbs 12907 Scalarcsca 12987 0gc0g 13163 +𝑓cplusf 13260 Grpcgrp 13407 LModclmod 14124 ·sf cscaf 14125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-mulr 12998 df-sca 13000 df-vsca 13001 df-0g 13165 df-plusf 13262 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-lmod 14126 df-scaf 14127 |
| This theorem is referenced by: lmodfopnelem2 14162 |
| Copyright terms: Public domain | W3C validator |