ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodfopnelem1 GIF version

Theorem lmodfopnelem1 14028
Description: Lemma 1 for lmodfopne 14030. (Contributed by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t · = ( ·sf𝑊)
lmodfopne.a + = (+𝑓𝑊)
lmodfopne.v 𝑉 = (Base‘𝑊)
lmodfopne.s 𝑆 = (Scalar‘𝑊)
lmodfopne.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
lmodfopnelem1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)

Proof of Theorem lmodfopnelem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lmodfopne.v . . . 4 𝑉 = (Base‘𝑊)
2 lmodfopne.a . . . 4 + = (+𝑓𝑊)
31, 2plusffng 13139 . . 3 (𝑊 ∈ LMod → + Fn (𝑉 × 𝑉))
4 lmodfopne.s . . . 4 𝑆 = (Scalar‘𝑊)
5 lmodfopne.k . . . 4 𝐾 = (Base‘𝑆)
6 lmodfopne.t . . . 4 · = ( ·sf𝑊)
71, 4, 5, 6scaffng 14013 . . 3 (𝑊 ∈ LMod → · Fn (𝐾 × 𝑉))
8 fneq1 5361 . . . . . . . . . 10 ( + = · → ( + Fn (𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉)))
9 fndmu 5376 . . . . . . . . . . 11 (( · Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉))
109ex 115 . . . . . . . . . 10 ( · Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
118, 10biimtrdi 163 . . . . . . . . 9 ( + = · → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1211com13 80 . . . . . . . 8 ( · Fn (𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1312impcom 125 . . . . . . 7 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
14 lmodgrp 13998 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
15 eqid 2204 . . . . . . . . . . . 12 (0g𝑊) = (0g𝑊)
161, 15grpidcl 13303 . . . . . . . . . . 11 (𝑊 ∈ Grp → (0g𝑊) ∈ 𝑉)
17 elex2 2787 . . . . . . . . . . 11 ((0g𝑊) ∈ 𝑉 → ∃𝑤 𝑤𝑉)
1814, 16, 173syl 17 . . . . . . . . . 10 (𝑊 ∈ LMod → ∃𝑤 𝑤𝑉)
19 xp11m 5120 . . . . . . . . . 10 ((∃𝑤 𝑤𝑉 ∧ ∃𝑤 𝑤𝑉) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
2018, 18, 19syl2anc 411 . . . . . . . . 9 (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
2120simprbda 383 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾)
2221expcom 116 . . . . . . 7 ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾))
2313, 22syl6 33 . . . . . 6 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾)))
2423com23 78 . . . . 5 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾)))
2524ex 115 . . . 4 ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))))
2625com3r 79 . . 3 (𝑊 ∈ LMod → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → ( + = ·𝑉 = 𝐾))))
273, 7, 26mp2d 47 . 2 (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))
2827imp 124 1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wex 1514  wcel 2175   × cxp 4672   Fn wfn 5265  cfv 5270  Basecbs 12774  Scalarcsca 12854  0gc0g 13030  +𝑓cplusf 13127  Grpcgrp 13274  LModclmod 13991   ·sf cscaf 13992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-mulr 12865  df-sca 12867  df-vsca 12868  df-0g 13032  df-plusf 13129  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-lmod 13993  df-scaf 13994
This theorem is referenced by:  lmodfopnelem2  14029
  Copyright terms: Public domain W3C validator