Step | Hyp | Ref
| Expression |
1 | | lmodfopne.v |
. . . 4
β’ π = (Baseβπ) |
2 | | lmodfopne.a |
. . . 4
β’ + =
(+πβπ) |
3 | 1, 2 | plusffng 12802 |
. . 3
β’ (π β LMod β + Fn (π Γ π)) |
4 | | lmodfopne.s |
. . . 4
β’ π = (Scalarβπ) |
5 | | lmodfopne.k |
. . . 4
β’ πΎ = (Baseβπ) |
6 | | lmodfopne.t |
. . . 4
β’ Β· = (
Β·sf βπ) |
7 | 1, 4, 5, 6 | scaffng 13493 |
. . 3
β’ (π β LMod β Β· Fn
(πΎ Γ π)) |
8 | | fneq1 5316 |
. . . . . . . . . 10
β’ ( + = Β· β
( + Fn
(π Γ π) β Β· Fn (π Γ π))) |
9 | | fndmu 5329 |
. . . . . . . . . . 11
β’ (( Β· Fn
(π Γ π) β§ Β· Fn (πΎ Γ π)) β (π Γ π) = (πΎ Γ π)) |
10 | 9 | ex 115 |
. . . . . . . . . 10
β’ ( Β· Fn
(π Γ π) β ( Β· Fn (πΎ Γ π) β (π Γ π) = (πΎ Γ π))) |
11 | 8, 10 | biimtrdi 163 |
. . . . . . . . 9
β’ ( + = Β· β
( + Fn
(π Γ π) β ( Β· Fn (πΎ Γ π) β (π Γ π) = (πΎ Γ π)))) |
12 | 11 | com13 80 |
. . . . . . . 8
β’ ( Β· Fn
(πΎ Γ π) β ( + Fn (π Γ π) β ( + = Β· β (π Γ π) = (πΎ Γ π)))) |
13 | 12 | impcom 125 |
. . . . . . 7
β’ (( + Fn (π Γ π) β§ Β· Fn (πΎ Γ π)) β ( + = Β· β (π Γ π) = (πΎ Γ π))) |
14 | | lmodgrp 13478 |
. . . . . . . . . . 11
β’ (π β LMod β π β Grp) |
15 | | eqid 2187 |
. . . . . . . . . . . 12
β’
(0gβπ) = (0gβπ) |
16 | 1, 15 | grpidcl 12925 |
. . . . . . . . . . 11
β’ (π β Grp β
(0gβπ)
β π) |
17 | | elex2 2765 |
. . . . . . . . . . 11
β’
((0gβπ) β π β βπ€ π€ β π) |
18 | 14, 16, 17 | 3syl 17 |
. . . . . . . . . 10
β’ (π β LMod β βπ€ π€ β π) |
19 | | xp11m 5079 |
. . . . . . . . . 10
β’
((βπ€ π€ β π β§ βπ€ π€ β π) β ((π Γ π) = (πΎ Γ π) β (π = πΎ β§ π = π))) |
20 | 18, 18, 19 | syl2anc 411 |
. . . . . . . . 9
β’ (π β LMod β ((π Γ π) = (πΎ Γ π) β (π = πΎ β§ π = π))) |
21 | 20 | simprbda 383 |
. . . . . . . 8
β’ ((π β LMod β§ (π Γ π) = (πΎ Γ π)) β π = πΎ) |
22 | 21 | expcom 116 |
. . . . . . 7
β’ ((π Γ π) = (πΎ Γ π) β (π β LMod β π = πΎ)) |
23 | 13, 22 | syl6 33 |
. . . . . 6
β’ (( + Fn (π Γ π) β§ Β· Fn (πΎ Γ π)) β ( + = Β· β (π β LMod β π = πΎ))) |
24 | 23 | com23 78 |
. . . . 5
β’ (( + Fn (π Γ π) β§ Β· Fn (πΎ Γ π)) β (π β LMod β ( + = Β· β π = πΎ))) |
25 | 24 | ex 115 |
. . . 4
β’ ( + Fn (π Γ π) β ( Β· Fn (πΎ Γ π) β (π β LMod β ( + = Β· β π = πΎ)))) |
26 | 25 | com3r 79 |
. . 3
β’ (π β LMod β ( + Fn (π Γ π) β ( Β· Fn (πΎ Γ π) β ( + = Β· β π = πΎ)))) |
27 | 3, 7, 26 | mp2d 47 |
. 2
β’ (π β LMod β ( + = Β· β
π = πΎ)) |
28 | 27 | imp 124 |
1
β’ ((π β LMod β§ + = Β· )
β π = πΎ) |