ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodfopnelem1 GIF version

Theorem lmodfopnelem1 13640
Description: Lemma 1 for lmodfopne 13642. (Contributed by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t · = ( ·sf𝑊)
lmodfopne.a + = (+𝑓𝑊)
lmodfopne.v 𝑉 = (Base‘𝑊)
lmodfopne.s 𝑆 = (Scalar‘𝑊)
lmodfopne.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
lmodfopnelem1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)

Proof of Theorem lmodfopnelem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lmodfopne.v . . . 4 𝑉 = (Base‘𝑊)
2 lmodfopne.a . . . 4 + = (+𝑓𝑊)
31, 2plusffng 12841 . . 3 (𝑊 ∈ LMod → + Fn (𝑉 × 𝑉))
4 lmodfopne.s . . . 4 𝑆 = (Scalar‘𝑊)
5 lmodfopne.k . . . 4 𝐾 = (Base‘𝑆)
6 lmodfopne.t . . . 4 · = ( ·sf𝑊)
71, 4, 5, 6scaffng 13625 . . 3 (𝑊 ∈ LMod → · Fn (𝐾 × 𝑉))
8 fneq1 5323 . . . . . . . . . 10 ( + = · → ( + Fn (𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉)))
9 fndmu 5336 . . . . . . . . . . 11 (( · Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉))
109ex 115 . . . . . . . . . 10 ( · Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
118, 10biimtrdi 163 . . . . . . . . 9 ( + = · → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1211com13 80 . . . . . . . 8 ( · Fn (𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1312impcom 125 . . . . . . 7 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
14 lmodgrp 13610 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
15 eqid 2189 . . . . . . . . . . . 12 (0g𝑊) = (0g𝑊)
161, 15grpidcl 12973 . . . . . . . . . . 11 (𝑊 ∈ Grp → (0g𝑊) ∈ 𝑉)
17 elex2 2768 . . . . . . . . . . 11 ((0g𝑊) ∈ 𝑉 → ∃𝑤 𝑤𝑉)
1814, 16, 173syl 17 . . . . . . . . . 10 (𝑊 ∈ LMod → ∃𝑤 𝑤𝑉)
19 xp11m 5085 . . . . . . . . . 10 ((∃𝑤 𝑤𝑉 ∧ ∃𝑤 𝑤𝑉) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
2018, 18, 19syl2anc 411 . . . . . . . . 9 (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
2120simprbda 383 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾)
2221expcom 116 . . . . . . 7 ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾))
2313, 22syl6 33 . . . . . 6 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾)))
2423com23 78 . . . . 5 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾)))
2524ex 115 . . . 4 ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))))
2625com3r 79 . . 3 (𝑊 ∈ LMod → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → ( + = ·𝑉 = 𝐾))))
273, 7, 26mp2d 47 . 2 (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))
2827imp 124 1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2160   × cxp 4642   Fn wfn 5230  cfv 5235  Basecbs 12512  Scalarcsca 12592  0gc0g 12761  +𝑓cplusf 12829  Grpcgrp 12945  LModclmod 13603   ·sf cscaf 13604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7932  ax-resscn 7933  ax-1re 7935  ax-addrcl 7938
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-5 9011  df-6 9012  df-ndx 12515  df-slot 12516  df-base 12518  df-plusg 12602  df-mulr 12603  df-sca 12605  df-vsca 12606  df-0g 12763  df-plusf 12831  df-mgm 12832  df-sgrp 12865  df-mnd 12878  df-grp 12948  df-lmod 13605  df-scaf 13606
This theorem is referenced by:  lmodfopnelem2  13641
  Copyright terms: Public domain W3C validator