Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tg1 | GIF version |
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
Ref | Expression |
---|---|
tg1 | ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-topgen 12577 | . . . . 5 ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | |
2 | 1 | funmpt2 5227 | . . . 4 ⊢ Fun topGen |
3 | funrel 5205 | . . . 4 ⊢ (Fun topGen → Rel topGen) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ Rel topGen |
5 | relelfvdm 5518 | . . 3 ⊢ ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen) | |
6 | 4, 5 | mpan 421 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) |
7 | eltg2 12693 | . . 3 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) | |
8 | 7 | simprbda 381 | . 2 ⊢ ((𝐵 ∈ dom topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐴 ⊆ ∪ 𝐵) |
9 | 6, 8 | mpancom 419 | 1 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 {cab 2151 ∀wral 2444 ∃wrex 2445 Vcvv 2726 ∩ cin 3115 ⊆ wss 3116 𝒫 cpw 3559 ∪ cuni 3789 dom cdm 4604 Rel wrel 4609 Fun wfun 5182 ‘cfv 5188 topGenctg 12571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-topgen 12577 |
This theorem is referenced by: unitg 12702 tgcl 12704 |
Copyright terms: Public domain | W3C validator |