Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tg1 | GIF version |
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
Ref | Expression |
---|---|
tg1 | ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-topgen 12631 | . . . . 5 ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | |
2 | 1 | funmpt2 5247 | . . . 4 ⊢ Fun topGen |
3 | funrel 5225 | . . . 4 ⊢ (Fun topGen → Rel topGen) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ Rel topGen |
5 | relelfvdm 5539 | . . 3 ⊢ ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen) | |
6 | 4, 5 | mpan 424 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) |
7 | eltg2 13124 | . . 3 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) | |
8 | 7 | simprbda 383 | . 2 ⊢ ((𝐵 ∈ dom topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐴 ⊆ ∪ 𝐵) |
9 | 6, 8 | mpancom 422 | 1 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2146 {cab 2161 ∀wral 2453 ∃wrex 2454 Vcvv 2735 ∩ cin 3126 ⊆ wss 3127 𝒫 cpw 3572 ∪ cuni 3805 dom cdm 4620 Rel wrel 4625 Fun wfun 5202 ‘cfv 5208 topGenctg 12625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-topgen 12631 |
This theorem is referenced by: unitg 13133 tgcl 13135 |
Copyright terms: Public domain | W3C validator |