| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tg1 | GIF version | ||
| Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
| Ref | Expression |
|---|---|
| tg1 | ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-topgen 13293 | . . . . 5 ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | |
| 2 | 1 | funmpt2 5357 | . . . 4 ⊢ Fun topGen |
| 3 | funrel 5335 | . . . 4 ⊢ (Fun topGen → Rel topGen) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ Rel topGen |
| 5 | relelfvdm 5659 | . . 3 ⊢ ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen) | |
| 6 | 4, 5 | mpan 424 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) |
| 7 | eltg2 14727 | . . 3 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) | |
| 8 | 7 | simprbda 383 | . 2 ⊢ ((𝐵 ∈ dom topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐴 ⊆ ∪ 𝐵) |
| 9 | 6, 8 | mpancom 422 | 1 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∃wrex 2509 Vcvv 2799 ∩ cin 3196 ⊆ wss 3197 𝒫 cpw 3649 ∪ cuni 3888 dom cdm 4719 Rel wrel 4724 Fun wfun 5312 ‘cfv 5318 topGenctg 13287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-topgen 13293 |
| This theorem is referenced by: unitg 14736 tgcl 14738 |
| Copyright terms: Public domain | W3C validator |