| Step | Hyp | Ref
| Expression |
| 1 | | iscn 14433 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 2 | 1 | simprbda 383 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| 3 | | eqid 2196 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 4 | 3 | cncnpi 14464 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ ∪ 𝐽) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
| 5 | 4 | ralrimiva 2570 |
. . . . 5
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ ∪ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
| 6 | 5 | adantl 277 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ ∪ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
| 7 | | toponuni 14251 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 8 | 7 | ad2antrr 488 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑋 = ∪ 𝐽) |
| 9 | 8 | raleqdv 2699 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥 ∈ ∪ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| 10 | 6, 9 | mpbird 167 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
| 11 | 2, 10 | jca 306 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| 12 | | simprl 529 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹:𝑋⟶𝑌) |
| 13 | | cnvimass 5032 |
. . . . . . . . . 10
⊢ (◡𝐹 “ 𝑦) ⊆ dom 𝐹 |
| 14 | | fdm 5413 |
. . . . . . . . . . 11
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) |
| 15 | 14 | adantl 277 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → dom 𝐹 = 𝑋) |
| 16 | 13, 15 | sseqtrid 3233 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (◡𝐹 “ 𝑦) ⊆ 𝑋) |
| 17 | | ssralv 3247 |
. . . . . . . . 9
⊢ ((◡𝐹 “ 𝑦) ⊆ 𝑋 → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| 18 | 16, 17 | syl 14 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| 19 | | simp-4l 541 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 20 | | simp-4r 542 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐾 ∈ (TopOn‘𝑌)) |
| 21 | | topontop 14250 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
| 22 | 20, 21 | syl 14 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐾 ∈ Top) |
| 23 | | simprr 531 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
| 24 | | cnprcl2k 14442 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝑥 ∈ 𝑋) |
| 25 | 19, 22, 23, 24 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝑥 ∈ 𝑋) |
| 26 | | simpllr 534 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝑦 ∈ 𝐾) |
| 27 | | ffn 5407 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑋⟶𝑌 → 𝐹 Fn 𝑋) |
| 28 | 27 | ad2antlr 489 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 Fn 𝑋) |
| 29 | | simprl 529 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝑥 ∈ (◡𝐹 “ 𝑦)) |
| 30 | | elpreima 5681 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ 𝑦) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ 𝑦))) |
| 31 | 30 | simplbda 384 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn 𝑋 ∧ 𝑥 ∈ (◡𝐹 “ 𝑦)) → (𝐹‘𝑥) ∈ 𝑦) |
| 32 | 28, 29, 31 | syl2anc 411 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (𝐹‘𝑥) ∈ 𝑦) |
| 33 | | icnpimaex 14447 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ∧ 𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦)) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦)) |
| 34 | 19, 20, 25, 23, 26, 32, 33 | syl33anc 1264 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦)) |
| 35 | | simpllr 534 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → 𝐹:𝑋⟶𝑌) |
| 36 | 35 | ffund 5411 |
. . . . . . . . . . . . . 14
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → Fun 𝐹) |
| 37 | | toponss 14262 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ 𝑋) |
| 38 | 19, 37 | sylan 283 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ 𝑋) |
| 39 | 35 | fdmd 5414 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → dom 𝐹 = 𝑋) |
| 40 | 38, 39 | sseqtrrd 3222 |
. . . . . . . . . . . . . 14
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ dom 𝐹) |
| 41 | | funimass3 5678 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐹 ∧ 𝑢 ⊆ dom 𝐹) → ((𝐹 “ 𝑢) ⊆ 𝑦 ↔ 𝑢 ⊆ (◡𝐹 “ 𝑦))) |
| 42 | 36, 40, 41 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → ((𝐹 “ 𝑢) ⊆ 𝑦 ↔ 𝑢 ⊆ (◡𝐹 “ 𝑦))) |
| 43 | 42 | anbi2d 464 |
. . . . . . . . . . . 12
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → ((𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦) ↔ (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
| 44 | 43 | rexbidva 2494 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦) ↔ ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
| 45 | 34, 44 | mpbid 147 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦))) |
| 46 | 45 | expr 375 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ (◡𝐹 “ 𝑦)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
| 47 | 46 | ralimdva 2564 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ (◡𝐹 “ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
| 48 | 18, 47 | syld 45 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
| 49 | 48 | impr 379 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦))) |
| 50 | 49 | an32s 568 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦))) |
| 51 | | topontop 14250 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 52 | 51 | ad3antrrr 492 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → 𝐽 ∈ Top) |
| 53 | | eltop2 14306 |
. . . . . 6
⊢ (𝐽 ∈ Top → ((◡𝐹 “ 𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
| 54 | 52, 53 | syl 14 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → ((◡𝐹 “ 𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
| 55 | 50, 54 | mpbird 167 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → (◡𝐹 “ 𝑦) ∈ 𝐽) |
| 56 | 55 | ralrimiva 2570 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽) |
| 57 | 1 | adantr 276 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 58 | 12, 56, 57 | mpbir2and 946 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 59 | 11, 58 | impbida 596 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |