Step | Hyp | Ref
| Expression |
1 | | iscn 12837 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
2 | 1 | simprbda 381 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
3 | | eqid 2165 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
4 | 3 | cncnpi 12868 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ ∪ 𝐽) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
5 | 4 | ralrimiva 2539 |
. . . . 5
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ ∪ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
6 | 5 | adantl 275 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ ∪ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
7 | | toponuni 12653 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
8 | 7 | ad2antrr 480 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑋 = ∪ 𝐽) |
9 | 8 | raleqdv 2667 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥 ∈ ∪ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
10 | 6, 9 | mpbird 166 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
11 | 2, 10 | jca 304 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
12 | | simprl 521 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹:𝑋⟶𝑌) |
13 | | cnvimass 4967 |
. . . . . . . . . 10
⊢ (◡𝐹 “ 𝑦) ⊆ dom 𝐹 |
14 | | fdm 5343 |
. . . . . . . . . . 11
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) |
15 | 14 | adantl 275 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → dom 𝐹 = 𝑋) |
16 | 13, 15 | sseqtrid 3192 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (◡𝐹 “ 𝑦) ⊆ 𝑋) |
17 | | ssralv 3206 |
. . . . . . . . 9
⊢ ((◡𝐹 “ 𝑦) ⊆ 𝑋 → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
18 | 16, 17 | syl 14 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
19 | | simp-4l 531 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐽 ∈ (TopOn‘𝑋)) |
20 | | simp-4r 532 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐾 ∈ (TopOn‘𝑌)) |
21 | | topontop 12652 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
22 | 20, 21 | syl 14 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐾 ∈ Top) |
23 | | simprr 522 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
24 | | cnprcl2k 12846 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝑥 ∈ 𝑋) |
25 | 19, 22, 23, 24 | syl3anc 1228 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝑥 ∈ 𝑋) |
26 | | simpllr 524 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝑦 ∈ 𝐾) |
27 | | ffn 5337 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑋⟶𝑌 → 𝐹 Fn 𝑋) |
28 | 27 | ad2antlr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 Fn 𝑋) |
29 | | simprl 521 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝑥 ∈ (◡𝐹 “ 𝑦)) |
30 | | elpreima 5604 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ 𝑦) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ 𝑦))) |
31 | 30 | simplbda 382 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn 𝑋 ∧ 𝑥 ∈ (◡𝐹 “ 𝑦)) → (𝐹‘𝑥) ∈ 𝑦) |
32 | 28, 29, 31 | syl2anc 409 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (𝐹‘𝑥) ∈ 𝑦) |
33 | | icnpimaex 12851 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ∧ 𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦)) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦)) |
34 | 19, 20, 25, 23, 26, 32, 33 | syl33anc 1243 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦)) |
35 | | simpllr 524 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → 𝐹:𝑋⟶𝑌) |
36 | 35 | ffund 5341 |
. . . . . . . . . . . . . 14
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → Fun 𝐹) |
37 | | toponss 12664 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ 𝑋) |
38 | 19, 37 | sylan 281 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ 𝑋) |
39 | 35 | fdmd 5344 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → dom 𝐹 = 𝑋) |
40 | 38, 39 | sseqtrrd 3181 |
. . . . . . . . . . . . . 14
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ dom 𝐹) |
41 | | funimass3 5601 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐹 ∧ 𝑢 ⊆ dom 𝐹) → ((𝐹 “ 𝑢) ⊆ 𝑦 ↔ 𝑢 ⊆ (◡𝐹 “ 𝑦))) |
42 | 36, 40, 41 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → ((𝐹 “ 𝑢) ⊆ 𝑦 ↔ 𝑢 ⊆ (◡𝐹 “ 𝑦))) |
43 | 42 | anbi2d 460 |
. . . . . . . . . . . 12
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → ((𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦) ↔ (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
44 | 43 | rexbidva 2463 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦) ↔ ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
45 | 34, 44 | mpbid 146 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦))) |
46 | 45 | expr 373 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ (◡𝐹 “ 𝑦)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
47 | 46 | ralimdva 2533 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ (◡𝐹 “ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
48 | 18, 47 | syld 45 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
49 | 48 | impr 377 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦))) |
50 | 49 | an32s 558 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦))) |
51 | | topontop 12652 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
52 | 51 | ad3antrrr 484 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → 𝐽 ∈ Top) |
53 | | eltop2 12710 |
. . . . . 6
⊢ (𝐽 ∈ Top → ((◡𝐹 “ 𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
54 | 52, 53 | syl 14 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → ((◡𝐹 “ 𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
55 | 50, 54 | mpbird 166 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → (◡𝐹 “ 𝑦) ∈ 𝐽) |
56 | 55 | ralrimiva 2539 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽) |
57 | 1 | adantr 274 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
58 | 12, 56, 57 | mpbir2and 934 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
59 | 11, 58 | impbida 586 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |