ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncnp GIF version

Theorem cncnp 13733
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 15-May-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cncnp ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))))
Distinct variable groups:   π‘₯,𝐹   π‘₯,𝐽   π‘₯,𝐾   π‘₯,𝑋   π‘₯,π‘Œ

Proof of Theorem cncnp
Dummy variables 𝑒 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscn 13700 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)))
21simprbda 383 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
3 eqid 2177 . . . . . . 7 βˆͺ 𝐽 = βˆͺ 𝐽
43cncnpi 13731 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))
54ralrimiva 2550 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) β†’ βˆ€π‘₯ ∈ βˆͺ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))
65adantl 277 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ βˆ€π‘₯ ∈ βˆͺ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))
7 toponuni 13518 . . . . . 6 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
87ad2antrr 488 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ 𝑋 = βˆͺ 𝐽)
98raleqdv 2679 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ (βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) ↔ βˆ€π‘₯ ∈ βˆͺ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯)))
106, 9mpbird 167 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))
112, 10jca 306 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯)))
12 simprl 529 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
13 cnvimass 4992 . . . . . . . . . 10 (◑𝐹 β€œ 𝑦) βŠ† dom 𝐹
14 fdm 5372 . . . . . . . . . . 11 (𝐹:π‘‹βŸΆπ‘Œ β†’ dom 𝐹 = 𝑋)
1514adantl 277 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ dom 𝐹 = 𝑋)
1613, 15sseqtrid 3206 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (◑𝐹 β€œ 𝑦) βŠ† 𝑋)
17 ssralv 3220 . . . . . . . . 9 ((◑𝐹 β€œ 𝑦) βŠ† 𝑋 β†’ (βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯)))
1816, 17syl 14 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯)))
19 simp-4l 541 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
20 simp-4r 542 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
21 topontop 13517 . . . . . . . . . . . . . 14 (𝐾 ∈ (TopOnβ€˜π‘Œ) β†’ 𝐾 ∈ Top)
2220, 21syl 14 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ 𝐾 ∈ Top)
23 simprr 531 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))
24 cnprcl2k 13709 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯)) β†’ π‘₯ ∈ 𝑋)
2519, 22, 23, 24syl3anc 1238 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ π‘₯ ∈ 𝑋)
26 simpllr 534 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ 𝑦 ∈ 𝐾)
27 ffn 5366 . . . . . . . . . . . . . 14 (𝐹:π‘‹βŸΆπ‘Œ β†’ 𝐹 Fn 𝑋)
2827ad2antlr 489 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ 𝐹 Fn 𝑋)
29 simprl 529 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ π‘₯ ∈ (◑𝐹 β€œ 𝑦))
30 elpreima 5636 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑋 β†’ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ↔ (π‘₯ ∈ 𝑋 ∧ (πΉβ€˜π‘₯) ∈ 𝑦)))
3130simplbda 384 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑋 ∧ π‘₯ ∈ (◑𝐹 β€œ 𝑦)) β†’ (πΉβ€˜π‘₯) ∈ 𝑦)
3228, 29, 31syl2anc 411 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ (πΉβ€˜π‘₯) ∈ 𝑦)
33 icnpimaex 13714 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ π‘₯ ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) ∧ 𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘₯) ∈ 𝑦)) β†’ βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ (𝐹 β€œ 𝑒) βŠ† 𝑦))
3419, 20, 25, 23, 26, 32, 33syl33anc 1253 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ (𝐹 β€œ 𝑒) βŠ† 𝑦))
35 simpllr 534 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑒 ∈ 𝐽) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
3635ffund 5370 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑒 ∈ 𝐽) β†’ Fun 𝐹)
37 toponss 13529 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑒 ∈ 𝐽) β†’ 𝑒 βŠ† 𝑋)
3819, 37sylan 283 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑒 ∈ 𝐽) β†’ 𝑒 βŠ† 𝑋)
3935fdmd 5373 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑒 ∈ 𝐽) β†’ dom 𝐹 = 𝑋)
4038, 39sseqtrrd 3195 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑒 ∈ 𝐽) β†’ 𝑒 βŠ† dom 𝐹)
41 funimass3 5633 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ 𝑒 βŠ† dom 𝐹) β†’ ((𝐹 β€œ 𝑒) βŠ† 𝑦 ↔ 𝑒 βŠ† (◑𝐹 β€œ 𝑦)))
4236, 40, 41syl2anc 411 . . . . . . . . . . . . 13 ((((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑒 ∈ 𝐽) β†’ ((𝐹 β€œ 𝑒) βŠ† 𝑦 ↔ 𝑒 βŠ† (◑𝐹 β€œ 𝑦)))
4342anbi2d 464 . . . . . . . . . . . 12 ((((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑒 ∈ 𝐽) β†’ ((π‘₯ ∈ 𝑒 ∧ (𝐹 β€œ 𝑒) βŠ† 𝑦) ↔ (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦))))
4443rexbidva 2474 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ (βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ (𝐹 β€œ 𝑒) βŠ† 𝑦) ↔ βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦))))
4534, 44mpbid 147 . . . . . . . . . 10 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦)))
4645expr 375 . . . . . . . . 9 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ π‘₯ ∈ (◑𝐹 β€œ 𝑦)) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦))))
4746ralimdva 2544 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦))))
4818, 47syld 45 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦))))
4948impr 379 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦)))
5049an32s 568 . . . . 5 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑦 ∈ 𝐾) β†’ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦)))
51 topontop 13517 . . . . . . 7 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
5251ad3antrrr 492 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑦 ∈ 𝐾) β†’ 𝐽 ∈ Top)
53 eltop2 13573 . . . . . 6 (𝐽 ∈ Top β†’ ((◑𝐹 β€œ 𝑦) ∈ 𝐽 ↔ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦))))
5452, 53syl 14 . . . . 5 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑦 ∈ 𝐾) β†’ ((◑𝐹 β€œ 𝑦) ∈ 𝐽 ↔ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦))))
5550, 54mpbird 167 . . . 4 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑦 ∈ 𝐾) β†’ (◑𝐹 β€œ 𝑦) ∈ 𝐽)
5655ralrimiva 2550 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)
571adantr 276 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)))
5812, 56, 57mpbir2and 944 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ 𝐹 ∈ (𝐽 Cn 𝐾))
5911, 58impbida 596 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456   βŠ† wss 3130  βˆͺ cuni 3810  β—‘ccnv 4626  dom cdm 4627   β€œ cima 4630  Fun wfun 5211   Fn wfn 5212  βŸΆwf 5213  β€˜cfv 5217  (class class class)co 5875  Topctop 13500  TopOnctopon 13513   Cn ccn 13688   CnP ccnp 13689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-map 6650  df-topgen 12709  df-top 13501  df-topon 13514  df-cn 13691  df-cnp 13692
This theorem is referenced by:  cncnp2m  13734  cnnei  13735  cnconst2  13736  metcn  14017  txmetcn  14022  cnlimcim  14143  cnlimc  14144  dvcn  14167
  Copyright terms: Public domain W3C validator