| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sopo | GIF version | ||
| Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.) |
| Ref | Expression |
|---|---|
| sopo | ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iso 4333 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 ∀wral 2475 class class class wbr 4034 Po wpo 4330 Or wor 4331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-iso 4333 |
| This theorem is referenced by: sonr 4353 sotr 4354 so2nr 4357 so3nr 4358 sosng 4737 fimaxq 10936 |
| Copyright terms: Public domain | W3C validator |