| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sopo | GIF version | ||
| Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.) | 
| Ref | Expression | 
|---|---|
| sopo | ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-iso 4332 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∨ wo 709 ∀wral 2475 class class class wbr 4033 Po wpo 4329 Or wor 4330 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 | 
| This theorem depends on definitions: df-bi 117 df-iso 4332 | 
| This theorem is referenced by: sonr 4352 sotr 4353 so2nr 4356 so3nr 4357 sosng 4736 fimaxq 10919 | 
| Copyright terms: Public domain | W3C validator |