Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sopo | GIF version |
Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.) |
Ref | Expression |
---|---|
sopo | ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iso 4275 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 ∀wral 2444 class class class wbr 3982 Po wpo 4272 Or wor 4273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-iso 4275 |
This theorem is referenced by: sonr 4295 sotr 4296 so2nr 4299 so3nr 4300 sosng 4677 fimaxq 10740 |
Copyright terms: Public domain | W3C validator |