ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sopo GIF version

Theorem sopo 4315
Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.)
Assertion
Ref Expression
sopo (𝑅 Or 𝐴𝑅 Po 𝐴)

Proof of Theorem sopo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iso 4299 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
21simplbi 274 1 (𝑅 Or 𝐴𝑅 Po 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 708  wral 2455   class class class wbr 4005   Po wpo 4296   Or wor 4297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-iso 4299
This theorem is referenced by:  sonr  4319  sotr  4320  so2nr  4323  so3nr  4324  sosng  4701  fimaxq  10809
  Copyright terms: Public domain W3C validator