ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sopo GIF version

Theorem sopo 4298
Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.)
Assertion
Ref Expression
sopo (𝑅 Or 𝐴𝑅 Po 𝐴)

Proof of Theorem sopo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iso 4282 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
21simplbi 272 1 (𝑅 Or 𝐴𝑅 Po 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703  wral 2448   class class class wbr 3989   Po wpo 4279   Or wor 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-iso 4282
This theorem is referenced by:  sonr  4302  sotr  4303  so2nr  4306  so3nr  4307  sosng  4684  fimaxq  10762
  Copyright terms: Public domain W3C validator