Step | Hyp | Ref
| Expression |
1 | | sopo 4298 |
. . 3
⊢ (𝑅 Or {𝐴} → 𝑅 Po {𝐴}) |
2 | | posng 4683 |
. . 3
⊢ ((Rel
𝑅 ∧ 𝐴 ∈ V) → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |
3 | 1, 2 | syl5ib 153 |
. 2
⊢ ((Rel
𝑅 ∧ 𝐴 ∈ V) → (𝑅 Or {𝐴} → ¬ 𝐴𝑅𝐴)) |
4 | 2 | biimpar 295 |
. . . 4
⊢ (((Rel
𝑅 ∧ 𝐴 ∈ V) ∧ ¬ 𝐴𝑅𝐴) → 𝑅 Po {𝐴}) |
5 | | ax-in2 610 |
. . . . . . . . 9
⊢ (¬
𝐴𝑅𝐴 → (𝐴𝑅𝐴 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
6 | 5 | adantr 274 |
. . . . . . . 8
⊢ ((¬
𝐴𝑅𝐴 ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → (𝐴𝑅𝐴 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
7 | | elsni 3601 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) |
8 | | elsni 3601 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {𝐴} → 𝑦 = 𝐴) |
9 | 7, 8 | breqan12d 4005 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥𝑅𝑦 ↔ 𝐴𝑅𝐴)) |
10 | 9 | imbi1d 230 |
. . . . . . . . 9
⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝐴𝑅𝐴 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
11 | 10 | adantl 275 |
. . . . . . . 8
⊢ ((¬
𝐴𝑅𝐴 ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝐴𝑅𝐴 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
12 | 6, 11 | mpbird 166 |
. . . . . . 7
⊢ ((¬
𝐴𝑅𝐴 ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
13 | 12 | ralrimivw 2544 |
. . . . . 6
⊢ ((¬
𝐴𝑅𝐴 ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → ∀𝑧 ∈ {𝐴} (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
14 | 13 | ralrimivva 2552 |
. . . . 5
⊢ (¬
𝐴𝑅𝐴 → ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
15 | 14 | adantl 275 |
. . . 4
⊢ (((Rel
𝑅 ∧ 𝐴 ∈ V) ∧ ¬ 𝐴𝑅𝐴) → ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
16 | | df-iso 4282 |
. . . 4
⊢ (𝑅 Or {𝐴} ↔ (𝑅 Po {𝐴} ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
17 | 4, 15, 16 | sylanbrc 415 |
. . 3
⊢ (((Rel
𝑅 ∧ 𝐴 ∈ V) ∧ ¬ 𝐴𝑅𝐴) → 𝑅 Or {𝐴}) |
18 | 17 | ex 114 |
. 2
⊢ ((Rel
𝑅 ∧ 𝐴 ∈ V) → (¬ 𝐴𝑅𝐴 → 𝑅 Or {𝐴})) |
19 | 3, 18 | impbid 128 |
1
⊢ ((Rel
𝑅 ∧ 𝐴 ∈ V) → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |