ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sopo Unicode version

Theorem sopo 4131
Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.)
Assertion
Ref Expression
sopo  |-  ( R  Or  A  ->  R  Po  A )

Proof of Theorem sopo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iso 4115 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
21simplbi 268 1  |-  ( R  Or  A  ->  R  Po  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 664   A.wral 2359   class class class wbr 3837    Po wpo 4112    Or wor 4113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104
This theorem depends on definitions:  df-bi 115  df-iso 4115
This theorem is referenced by:  sonr  4135  sotr  4136  so2nr  4139  so3nr  4140  sosng  4499  fimaxq  10200
  Copyright terms: Public domain W3C validator