ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sopo Unicode version

Theorem sopo 4325
Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.)
Assertion
Ref Expression
sopo  |-  ( R  Or  A  ->  R  Po  A )

Proof of Theorem sopo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iso 4309 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
21simplbi 274 1  |-  ( R  Or  A  ->  R  Po  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709   A.wral 2465   class class class wbr 4015    Po wpo 4306    Or wor 4307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-iso 4309
This theorem is referenced by:  sonr  4329  sotr  4330  so2nr  4333  so3nr  4334  sosng  4711  fimaxq  10820
  Copyright terms: Public domain W3C validator