ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soss GIF version

Theorem soss 4405
Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
soss (𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))

Proof of Theorem soss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poss 4389 . . 3 (𝐴𝐵 → (𝑅 Po 𝐵𝑅 Po 𝐴))
2 ssel 3218 . . . . . . . 8 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
3 ssel 3218 . . . . . . . 8 (𝐴𝐵 → (𝑦𝐴𝑦𝐵))
4 ssel 3218 . . . . . . . 8 (𝐴𝐵 → (𝑧𝐴𝑧𝐵))
52, 3, 43anim123d 1353 . . . . . . 7 (𝐴𝐵 → ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝐵𝑦𝐵𝑧𝐵)))
65imim1d 75 . . . . . 6 (𝐴𝐵 → (((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))) → ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))))
762alimdv 1927 . . . . 5 (𝐴𝐵 → (∀𝑦𝑧((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))) → ∀𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))))
87alimdv 1925 . . . 4 (𝐴𝐵 → (∀𝑥𝑦𝑧((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))) → ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))))
9 r3al 2574 . . . 4 (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
10 r3al 2574 . . . 4 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
118, 9, 103imtr4g 205 . . 3 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) → ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
121, 11anim12d 335 . 2 (𝐴𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))) → (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))))
13 df-iso 4388 . 2 (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
14 df-iso 4388 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
1512, 13, 143imtr4g 205 1 (𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713  w3a 1002  wal 1393  wcel 2200  wral 2508  wss 3197   class class class wbr 4083   Po wpo 4385   Or wor 4386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-in 3203  df-ss 3210  df-po 4387  df-iso 4388
This theorem is referenced by:  soeq2  4407
  Copyright terms: Public domain W3C validator