| Step | Hyp | Ref
 | Expression | 
| 1 |   | nfcsb1v 3117 | 
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑣 / 𝑥⦌𝑋 | 
| 2 | 1 | nfel1 2350 | 
. . . . . 6
⊢
Ⅎ𝑥⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 | 
| 3 |   | csbeq1a 3093 | 
. . . . . . 7
⊢ (𝑥 = 𝑣 → 𝑋 = ⦋𝑣 / 𝑥⦌𝑋) | 
| 4 | 3 | eleq1d 2265 | 
. . . . . 6
⊢ (𝑥 = 𝑣 → (𝑋 ∈ 𝐵 ↔ ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵)) | 
| 5 | 2, 4 | rspc 2862 | 
. . . . 5
⊢ (𝑣 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 → ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵)) | 
| 6 | 5 | impcom 125 | 
. . . 4
⊢
((∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴) → ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵) | 
| 7 |   | poirr 4342 | 
. . . . 5
⊢ ((𝑅 Po 𝐵 ∧ ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵) → ¬ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑣 / 𝑥⦌𝑋) | 
| 8 |   | df-br 4034 | 
. . . . . 6
⊢ (𝑣𝑆𝑣 ↔ 〈𝑣, 𝑣〉 ∈ 𝑆) | 
| 9 |   | pofun.1 | 
. . . . . . 7
⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} | 
| 10 | 9 | eleq2i 2263 | 
. . . . . 6
⊢
(〈𝑣, 𝑣〉 ∈ 𝑆 ↔ 〈𝑣, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌}) | 
| 11 |   | nfcv 2339 | 
. . . . . . . 8
⊢
Ⅎ𝑥𝑅 | 
| 12 |   | nfcv 2339 | 
. . . . . . . 8
⊢
Ⅎ𝑥𝑌 | 
| 13 | 1, 11, 12 | nfbr 4079 | 
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑣 / 𝑥⦌𝑋𝑅𝑌 | 
| 14 |   | nfv 1542 | 
. . . . . . 7
⊢
Ⅎ𝑦⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑣 / 𝑥⦌𝑋 | 
| 15 |   | vex 2766 | 
. . . . . . 7
⊢ 𝑣 ∈ V | 
| 16 | 3 | breq1d 4043 | 
. . . . . . 7
⊢ (𝑥 = 𝑣 → (𝑋𝑅𝑌 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅𝑌)) | 
| 17 |   | vex 2766 | 
. . . . . . . . . 10
⊢ 𝑦 ∈ V | 
| 18 |   | pofun.2 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → 𝑋 = 𝑌) | 
| 19 | 17, 12, 18 | csbief 3129 | 
. . . . . . . . 9
⊢
⦋𝑦 /
𝑥⦌𝑋 = 𝑌 | 
| 20 |   | csbeq1 3087 | 
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → ⦋𝑦 / 𝑥⦌𝑋 = ⦋𝑣 / 𝑥⦌𝑋) | 
| 21 | 19, 20 | eqtr3id 2243 | 
. . . . . . . 8
⊢ (𝑦 = 𝑣 → 𝑌 = ⦋𝑣 / 𝑥⦌𝑋) | 
| 22 | 21 | breq2d 4045 | 
. . . . . . 7
⊢ (𝑦 = 𝑣 → (⦋𝑣 / 𝑥⦌𝑋𝑅𝑌 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑣 / 𝑥⦌𝑋)) | 
| 23 | 13, 14, 15, 15, 16, 22 | opelopabf 4309 | 
. . . . . 6
⊢
(〈𝑣, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑣 / 𝑥⦌𝑋) | 
| 24 | 8, 10, 23 | 3bitri 206 | 
. . . . 5
⊢ (𝑣𝑆𝑣 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑣 / 𝑥⦌𝑋) | 
| 25 | 7, 24 | sylnibr 678 | 
. . . 4
⊢ ((𝑅 Po 𝐵 ∧ ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵) → ¬ 𝑣𝑆𝑣) | 
| 26 | 6, 25 | sylan2 286 | 
. . 3
⊢ ((𝑅 Po 𝐵 ∧ (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴)) → ¬ 𝑣𝑆𝑣) | 
| 27 | 26 | anassrs 400 | 
. 2
⊢ (((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) ∧ 𝑣 ∈ 𝐴) → ¬ 𝑣𝑆𝑣) | 
| 28 | 5 | com12 30 | 
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 → (𝑣 ∈ 𝐴 → ⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵)) | 
| 29 |   | nfcsb1v 3117 | 
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝑋 | 
| 30 | 29 | nfel1 2350 | 
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 | 
| 31 |   | csbeq1a 3093 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → 𝑋 = ⦋𝑤 / 𝑥⦌𝑋) | 
| 32 | 31 | eleq1d 2265 | 
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑋 ∈ 𝐵 ↔ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵)) | 
| 33 | 30, 32 | rspc 2862 | 
. . . . . . 7
⊢ (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 → ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵)) | 
| 34 | 33 | com12 30 | 
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 → (𝑤 ∈ 𝐴 → ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵)) | 
| 35 |   | nfcsb1v 3117 | 
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝑋 | 
| 36 | 35 | nfel1 2350 | 
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵 | 
| 37 |   | csbeq1a 3093 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝑋 = ⦋𝑧 / 𝑥⦌𝑋) | 
| 38 | 37 | eleq1d 2265 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑋 ∈ 𝐵 ↔ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) | 
| 39 | 36, 38 | rspc 2862 | 
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 → ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) | 
| 40 | 39 | com12 30 | 
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 → (𝑧 ∈ 𝐴 → ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) | 
| 41 | 28, 34, 40 | 3anim123d 1330 | 
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 → ((𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵))) | 
| 42 | 41 | imp 124 | 
. . . 4
⊢
((∀𝑥 ∈
𝐴 𝑋 ∈ 𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) | 
| 43 | 42 | adantll 476 | 
. . 3
⊢ (((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) | 
| 44 |   | potr 4343 | 
. . . . 5
⊢ ((𝑅 Po 𝐵 ∧ (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) → ((⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋 ∧ ⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋) → ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋)) | 
| 45 |   | df-br 4034 | 
. . . . . . 7
⊢ (𝑣𝑆𝑤 ↔ 〈𝑣, 𝑤〉 ∈ 𝑆) | 
| 46 | 9 | eleq2i 2263 | 
. . . . . . 7
⊢
(〈𝑣, 𝑤〉 ∈ 𝑆 ↔ 〈𝑣, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌}) | 
| 47 |   | nfv 1542 | 
. . . . . . . 8
⊢
Ⅎ𝑦⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋 | 
| 48 |   | vex 2766 | 
. . . . . . . 8
⊢ 𝑤 ∈ V | 
| 49 |   | csbeq1 3087 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → ⦋𝑦 / 𝑥⦌𝑋 = ⦋𝑤 / 𝑥⦌𝑋) | 
| 50 | 19, 49 | eqtr3id 2243 | 
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → 𝑌 = ⦋𝑤 / 𝑥⦌𝑋) | 
| 51 | 50 | breq2d 4045 | 
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (⦋𝑣 / 𝑥⦌𝑋𝑅𝑌 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋)) | 
| 52 | 13, 47, 15, 48, 16, 51 | opelopabf 4309 | 
. . . . . . 7
⊢
(〈𝑣, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋) | 
| 53 | 45, 46, 52 | 3bitri 206 | 
. . . . . 6
⊢ (𝑣𝑆𝑤 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋) | 
| 54 |   | df-br 4034 | 
. . . . . . 7
⊢ (𝑤𝑆𝑧 ↔ 〈𝑤, 𝑧〉 ∈ 𝑆) | 
| 55 | 9 | eleq2i 2263 | 
. . . . . . 7
⊢
(〈𝑤, 𝑧〉 ∈ 𝑆 ↔ 〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌}) | 
| 56 | 29, 11, 12 | nfbr 4079 | 
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝑋𝑅𝑌 | 
| 57 |   | nfv 1542 | 
. . . . . . . 8
⊢
Ⅎ𝑦⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋 | 
| 58 |   | vex 2766 | 
. . . . . . . 8
⊢ 𝑧 ∈ V | 
| 59 | 31 | breq1d 4043 | 
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑋𝑅𝑌 ↔ ⦋𝑤 / 𝑥⦌𝑋𝑅𝑌)) | 
| 60 |   | csbeq1 3087 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝑋 = ⦋𝑧 / 𝑥⦌𝑋) | 
| 61 | 19, 60 | eqtr3id 2243 | 
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → 𝑌 = ⦋𝑧 / 𝑥⦌𝑋) | 
| 62 | 61 | breq2d 4045 | 
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (⦋𝑤 / 𝑥⦌𝑋𝑅𝑌 ↔ ⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋)) | 
| 63 | 56, 57, 48, 58, 59, 62 | opelopabf 4309 | 
. . . . . . 7
⊢
(〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} ↔ ⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋) | 
| 64 | 54, 55, 63 | 3bitri 206 | 
. . . . . 6
⊢ (𝑤𝑆𝑧 ↔ ⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋) | 
| 65 | 53, 64 | anbi12i 460 | 
. . . . 5
⊢ ((𝑣𝑆𝑤 ∧ 𝑤𝑆𝑧) ↔ (⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑤 / 𝑥⦌𝑋 ∧ ⦋𝑤 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋)) | 
| 66 |   | df-br 4034 | 
. . . . . 6
⊢ (𝑣𝑆𝑧 ↔ 〈𝑣, 𝑧〉 ∈ 𝑆) | 
| 67 | 9 | eleq2i 2263 | 
. . . . . 6
⊢
(〈𝑣, 𝑧〉 ∈ 𝑆 ↔ 〈𝑣, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌}) | 
| 68 |   | nfv 1542 | 
. . . . . . 7
⊢
Ⅎ𝑦⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋 | 
| 69 | 61 | breq2d 4045 | 
. . . . . . 7
⊢ (𝑦 = 𝑧 → (⦋𝑣 / 𝑥⦌𝑋𝑅𝑌 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋)) | 
| 70 | 13, 68, 15, 58, 16, 69 | opelopabf 4309 | 
. . . . . 6
⊢
(〈𝑣, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋) | 
| 71 | 66, 67, 70 | 3bitri 206 | 
. . . . 5
⊢ (𝑣𝑆𝑧 ↔ ⦋𝑣 / 𝑥⦌𝑋𝑅⦋𝑧 / 𝑥⦌𝑋) | 
| 72 | 44, 65, 71 | 3imtr4g 205 | 
. . . 4
⊢ ((𝑅 Po 𝐵 ∧ (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) → ((𝑣𝑆𝑤 ∧ 𝑤𝑆𝑧) → 𝑣𝑆𝑧)) | 
| 73 | 72 | adantlr 477 | 
. . 3
⊢ (((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) ∧ (⦋𝑣 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑤 / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝑋 ∈ 𝐵)) → ((𝑣𝑆𝑤 ∧ 𝑤𝑆𝑧) → 𝑣𝑆𝑧)) | 
| 74 | 43, 73 | syldan 282 | 
. 2
⊢ (((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) ∧ (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑣𝑆𝑤 ∧ 𝑤𝑆𝑧) → 𝑣𝑆𝑧)) | 
| 75 | 27, 74 | ispod 4339 | 
1
⊢ ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) → 𝑆 Po 𝐴) |