ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  so2nr GIF version

Theorem so2nr 4315
Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
so2nr ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))

Proof of Theorem so2nr
StepHypRef Expression
1 sopo 4307 . 2 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 po2nr 4303 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
31, 2sylan 283 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2146   class class class wbr 3998   Po wpo 4288   Or wor 4289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-po 4290  df-iso 4291
This theorem is referenced by:  sotricim  4317  cauappcvgprlemdisj  7625  cauappcvgprlemladdru  7630  cauappcvgprlemladdrl  7631  caucvgprlemnbj  7641  caucvgprprlemnbj  7667  suplocexprlemmu  7692  ltnsym2  8022
  Copyright terms: Public domain W3C validator