Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fimaxq | GIF version |
Description: A finite set of rational numbers has a maximum. (Contributed by Jim Kingdon, 6-Sep-2022.) |
Ref | Expression |
---|---|
fimaxq | ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qssre 9589 | . . . . 5 ⊢ ℚ ⊆ ℝ | |
2 | sstr 3155 | . . . . . 6 ⊢ ((𝐴 ⊆ ℚ ∧ ℚ ⊆ ℝ) → 𝐴 ⊆ ℝ) | |
3 | ltso 7997 | . . . . . . 7 ⊢ < Or ℝ | |
4 | sopo 4298 | . . . . . . 7 ⊢ ( < Or ℝ → < Po ℝ) | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ < Po ℝ |
6 | poss 4283 | . . . . . 6 ⊢ (𝐴 ⊆ ℝ → ( < Po ℝ → < Po 𝐴)) | |
7 | 2, 5, 6 | mpisyl 1439 | . . . . 5 ⊢ ((𝐴 ⊆ ℚ ∧ ℚ ⊆ ℝ) → < Po 𝐴) |
8 | 1, 7 | mpan2 423 | . . . 4 ⊢ (𝐴 ⊆ ℚ → < Po 𝐴) |
9 | 8 | 3ad2ant1 1013 | . . 3 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → < Po 𝐴) |
10 | simpl1 995 | . . . . . 6 ⊢ (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝐴 ⊆ ℚ) | |
11 | simprl 526 | . . . . . 6 ⊢ (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ 𝐴) | |
12 | 10, 11 | sseldd 3148 | . . . . 5 ⊢ (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℚ) |
13 | simprr 527 | . . . . . 6 ⊢ (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) | |
14 | 10, 13 | sseldd 3148 | . . . . 5 ⊢ (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ℚ) |
15 | qtri3or 10199 | . . . . 5 ⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) | |
16 | 12, 14, 15 | syl2anc 409 | . . . 4 ⊢ (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
17 | 16 | ralrimivva 2552 | . . 3 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
18 | simp2 993 | . . 3 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) | |
19 | simp3 994 | . . 3 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
20 | 9, 17, 18, 19 | fimax2gtri 6879 | . 2 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦) |
21 | simpll1 1031 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐴 ⊆ ℚ) | |
22 | simpr 109 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
23 | 21, 22 | sseldd 3148 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℚ) |
24 | qre 9584 | . . . . . 6 ⊢ (𝑦 ∈ ℚ → 𝑦 ∈ ℝ) | |
25 | 23, 24 | syl 14 | . . . . 5 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
26 | simplr 525 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
27 | 21, 26 | sseldd 3148 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ ℚ) |
28 | qre 9584 | . . . . . 6 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
29 | 27, 28 | syl 14 | . . . . 5 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ ℝ) |
30 | 25, 29 | lenltd 8037 | . . . 4 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑦 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑦)) |
31 | 30 | ralbidva 2466 | . . 3 ⊢ (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦)) |
32 | 31 | rexbidva 2467 | . 2 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦)) |
33 | 20, 32 | mpbird 166 | 1 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ w3o 972 ∧ w3a 973 ∈ wcel 2141 ≠ wne 2340 ∀wral 2448 ∃wrex 2449 ⊆ wss 3121 ∅c0 3414 class class class wbr 3989 Po wpo 4279 Or wor 4280 Fincfn 6718 ℝcr 7773 < clt 7954 ≤ cle 7955 ℚcq 9578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-er 6513 df-en 6719 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-q 9579 df-rp 9611 |
This theorem is referenced by: fiubm 10763 zfz1iso 10776 |
Copyright terms: Public domain | W3C validator |