ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimaxq GIF version

Theorem fimaxq 10972
Description: A finite set of rational numbers has a maximum. (Contributed by Jim Kingdon, 6-Sep-2022.)
Assertion
Ref Expression
fimaxq ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxq
StepHypRef Expression
1 qssre 9751 . . . . 5 ℚ ⊆ ℝ
2 sstr 3201 . . . . . 6 ((𝐴 ⊆ ℚ ∧ ℚ ⊆ ℝ) → 𝐴 ⊆ ℝ)
3 ltso 8150 . . . . . . 7 < Or ℝ
4 sopo 4360 . . . . . . 7 ( < Or ℝ → < Po ℝ)
53, 4ax-mp 5 . . . . . 6 < Po ℝ
6 poss 4345 . . . . . 6 (𝐴 ⊆ ℝ → ( < Po ℝ → < Po 𝐴))
72, 5, 6mpisyl 1466 . . . . 5 ((𝐴 ⊆ ℚ ∧ ℚ ⊆ ℝ) → < Po 𝐴)
81, 7mpan2 425 . . . 4 (𝐴 ⊆ ℚ → < Po 𝐴)
983ad2ant1 1021 . . 3 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → < Po 𝐴)
10 simpl1 1003 . . . . . 6 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → 𝐴 ⊆ ℚ)
11 simprl 529 . . . . . 6 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
1210, 11sseldd 3194 . . . . 5 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 ∈ ℚ)
13 simprr 531 . . . . . 6 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
1410, 13sseldd 3194 . . . . 5 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦 ∈ ℚ)
15 qtri3or 10383 . . . . 5 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
1612, 14, 15syl2anc 411 . . . 4 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
1716ralrimivva 2588 . . 3 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∀𝑥𝐴𝑦𝐴 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
18 simp2 1001 . . 3 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
19 simp3 1002 . . 3 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
209, 17, 18, 19fimax2gtri 6998 . 2 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 < 𝑦)
21 simpll1 1039 . . . . . . 7 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝐴 ⊆ ℚ)
22 simpr 110 . . . . . . 7 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
2321, 22sseldd 3194 . . . . . 6 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ ℚ)
24 qre 9746 . . . . . 6 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
2523, 24syl 14 . . . . 5 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
26 simplr 528 . . . . . . 7 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥𝐴)
2721, 26sseldd 3194 . . . . . 6 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ ℚ)
28 qre 9746 . . . . . 6 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
2927, 28syl 14 . . . . 5 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ)
3025, 29lenltd 8190 . . . 4 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑦𝑥 ↔ ¬ 𝑥 < 𝑦))
3130ralbidva 2502 . . 3 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑦𝐴 ¬ 𝑥 < 𝑦))
3231rexbidva 2503 . 2 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 < 𝑦))
3320, 32mpbird 167 1 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3o 980  w3a 981  wcel 2176  wne 2376  wral 2484  wrex 2485  wss 3166  c0 3460   class class class wbr 4044   Po wpo 4341   Or wor 4342  Fincfn 6827  cr 7924   < clt 8107  cle 8108  cq 9740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-er 6620  df-en 6828  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-q 9741  df-rp 9776
This theorem is referenced by:  fiubm  10973  zfz1iso  10986
  Copyright terms: Public domain W3C validator