| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fimaxq | GIF version | ||
| Description: A finite set of rational numbers has a maximum. (Contributed by Jim Kingdon, 6-Sep-2022.) |
| Ref | Expression |
|---|---|
| fimaxq | ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qssre 9825 | . . . . 5 ⊢ ℚ ⊆ ℝ | |
| 2 | sstr 3232 | . . . . . 6 ⊢ ((𝐴 ⊆ ℚ ∧ ℚ ⊆ ℝ) → 𝐴 ⊆ ℝ) | |
| 3 | ltso 8224 | . . . . . . 7 ⊢ < Or ℝ | |
| 4 | sopo 4404 | . . . . . . 7 ⊢ ( < Or ℝ → < Po ℝ) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ < Po ℝ |
| 6 | poss 4389 | . . . . . 6 ⊢ (𝐴 ⊆ ℝ → ( < Po ℝ → < Po 𝐴)) | |
| 7 | 2, 5, 6 | mpisyl 1489 | . . . . 5 ⊢ ((𝐴 ⊆ ℚ ∧ ℚ ⊆ ℝ) → < Po 𝐴) |
| 8 | 1, 7 | mpan2 425 | . . . 4 ⊢ (𝐴 ⊆ ℚ → < Po 𝐴) |
| 9 | 8 | 3ad2ant1 1042 | . . 3 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → < Po 𝐴) |
| 10 | simpl1 1024 | . . . . . 6 ⊢ (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝐴 ⊆ ℚ) | |
| 11 | simprl 529 | . . . . . 6 ⊢ (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ 𝐴) | |
| 12 | 10, 11 | sseldd 3225 | . . . . 5 ⊢ (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℚ) |
| 13 | simprr 531 | . . . . . 6 ⊢ (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) | |
| 14 | 10, 13 | sseldd 3225 | . . . . 5 ⊢ (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ℚ) |
| 15 | qtri3or 10460 | . . . . 5 ⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) | |
| 16 | 12, 14, 15 | syl2anc 411 | . . . 4 ⊢ (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
| 17 | 16 | ralrimivva 2612 | . . 3 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
| 18 | simp2 1022 | . . 3 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) | |
| 19 | simp3 1023 | . . 3 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
| 20 | 9, 17, 18, 19 | fimax2gtri 7063 | . 2 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦) |
| 21 | simpll1 1060 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐴 ⊆ ℚ) | |
| 22 | simpr 110 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
| 23 | 21, 22 | sseldd 3225 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℚ) |
| 24 | qre 9820 | . . . . . 6 ⊢ (𝑦 ∈ ℚ → 𝑦 ∈ ℝ) | |
| 25 | 23, 24 | syl 14 | . . . . 5 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
| 26 | simplr 528 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 27 | 21, 26 | sseldd 3225 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ ℚ) |
| 28 | qre 9820 | . . . . . 6 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
| 29 | 27, 28 | syl 14 | . . . . 5 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 30 | 25, 29 | lenltd 8264 | . . . 4 ⊢ ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑦 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑦)) |
| 31 | 30 | ralbidva 2526 | . . 3 ⊢ (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦)) |
| 32 | 31 | rexbidva 2527 | . 2 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦)) |
| 33 | 20, 32 | mpbird 167 | 1 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ w3o 1001 ∧ w3a 1002 ∈ wcel 2200 ≠ wne 2400 ∀wral 2508 ∃wrex 2509 ⊆ wss 3197 ∅c0 3491 class class class wbr 4083 Po wpo 4385 Or wor 4386 Fincfn 6887 ℝcr 7998 < clt 8181 ≤ cle 8182 ℚcq 9814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-er 6680 df-en 6888 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-n0 9370 df-z 9447 df-q 9815 df-rp 9850 |
| This theorem is referenced by: fiubm 11050 zfz1iso 11063 |
| Copyright terms: Public domain | W3C validator |