ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimaxq GIF version

Theorem fimaxq 10605
Description: A finite set of rational numbers has a maximum. (Contributed by Jim Kingdon, 6-Sep-2022.)
Assertion
Ref Expression
fimaxq ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxq
StepHypRef Expression
1 qssre 9449 . . . . 5 ℚ ⊆ ℝ
2 sstr 3110 . . . . . 6 ((𝐴 ⊆ ℚ ∧ ℚ ⊆ ℝ) → 𝐴 ⊆ ℝ)
3 ltso 7866 . . . . . . 7 < Or ℝ
4 sopo 4243 . . . . . . 7 ( < Or ℝ → < Po ℝ)
53, 4ax-mp 5 . . . . . 6 < Po ℝ
6 poss 4228 . . . . . 6 (𝐴 ⊆ ℝ → ( < Po ℝ → < Po 𝐴))
72, 5, 6mpisyl 1423 . . . . 5 ((𝐴 ⊆ ℚ ∧ ℚ ⊆ ℝ) → < Po 𝐴)
81, 7mpan2 422 . . . 4 (𝐴 ⊆ ℚ → < Po 𝐴)
983ad2ant1 1003 . . 3 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → < Po 𝐴)
10 simpl1 985 . . . . . 6 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → 𝐴 ⊆ ℚ)
11 simprl 521 . . . . . 6 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
1210, 11sseldd 3103 . . . . 5 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 ∈ ℚ)
13 simprr 522 . . . . . 6 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
1410, 13sseldd 3103 . . . . 5 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦 ∈ ℚ)
15 qtri3or 10051 . . . . 5 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
1612, 14, 15syl2anc 409 . . . 4 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
1716ralrimivva 2517 . . 3 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∀𝑥𝐴𝑦𝐴 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
18 simp2 983 . . 3 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
19 simp3 984 . . 3 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
209, 17, 18, 19fimax2gtri 6803 . 2 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 < 𝑦)
21 simpll1 1021 . . . . . . 7 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝐴 ⊆ ℚ)
22 simpr 109 . . . . . . 7 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
2321, 22sseldd 3103 . . . . . 6 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ ℚ)
24 qre 9444 . . . . . 6 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
2523, 24syl 14 . . . . 5 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
26 simplr 520 . . . . . . 7 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥𝐴)
2721, 26sseldd 3103 . . . . . 6 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ ℚ)
28 qre 9444 . . . . . 6 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
2927, 28syl 14 . . . . 5 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ)
3025, 29lenltd 7904 . . . 4 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑦𝑥 ↔ ¬ 𝑥 < 𝑦))
3130ralbidva 2434 . . 3 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑦𝐴 ¬ 𝑥 < 𝑦))
3231rexbidva 2435 . 2 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 < 𝑦))
3320, 32mpbird 166 1 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3o 962  w3a 963  wcel 1481  wne 2309  wral 2417  wrex 2418  wss 3076  c0 3368   class class class wbr 3937   Po wpo 4224   Or wor 4225  Fincfn 6642  cr 7643   < clt 7824  cle 7825  cq 9438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-er 6437  df-en 6643  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439  df-rp 9471
This theorem is referenced by:  zfz1iso  10616
  Copyright terms: Public domain W3C validator