ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimaxq GIF version

Theorem fimaxq 10740
Description: A finite set of rational numbers has a maximum. (Contributed by Jim Kingdon, 6-Sep-2022.)
Assertion
Ref Expression
fimaxq ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxq
StepHypRef Expression
1 qssre 9568 . . . . 5 ℚ ⊆ ℝ
2 sstr 3150 . . . . . 6 ((𝐴 ⊆ ℚ ∧ ℚ ⊆ ℝ) → 𝐴 ⊆ ℝ)
3 ltso 7976 . . . . . . 7 < Or ℝ
4 sopo 4291 . . . . . . 7 ( < Or ℝ → < Po ℝ)
53, 4ax-mp 5 . . . . . 6 < Po ℝ
6 poss 4276 . . . . . 6 (𝐴 ⊆ ℝ → ( < Po ℝ → < Po 𝐴))
72, 5, 6mpisyl 1434 . . . . 5 ((𝐴 ⊆ ℚ ∧ ℚ ⊆ ℝ) → < Po 𝐴)
81, 7mpan2 422 . . . 4 (𝐴 ⊆ ℚ → < Po 𝐴)
983ad2ant1 1008 . . 3 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → < Po 𝐴)
10 simpl1 990 . . . . . 6 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → 𝐴 ⊆ ℚ)
11 simprl 521 . . . . . 6 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
1210, 11sseldd 3143 . . . . 5 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 ∈ ℚ)
13 simprr 522 . . . . . 6 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
1410, 13sseldd 3143 . . . . 5 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦 ∈ ℚ)
15 qtri3or 10178 . . . . 5 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
1612, 14, 15syl2anc 409 . . . 4 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
1716ralrimivva 2548 . . 3 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∀𝑥𝐴𝑦𝐴 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
18 simp2 988 . . 3 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
19 simp3 989 . . 3 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
209, 17, 18, 19fimax2gtri 6867 . 2 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 < 𝑦)
21 simpll1 1026 . . . . . . 7 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝐴 ⊆ ℚ)
22 simpr 109 . . . . . . 7 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
2321, 22sseldd 3143 . . . . . 6 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ ℚ)
24 qre 9563 . . . . . 6 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
2523, 24syl 14 . . . . 5 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
26 simplr 520 . . . . . . 7 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥𝐴)
2721, 26sseldd 3143 . . . . . 6 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ ℚ)
28 qre 9563 . . . . . 6 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
2927, 28syl 14 . . . . 5 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ)
3025, 29lenltd 8016 . . . 4 ((((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑦𝑥 ↔ ¬ 𝑥 < 𝑦))
3130ralbidva 2462 . . 3 (((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑦𝐴 ¬ 𝑥 < 𝑦))
3231rexbidva 2463 . 2 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 < 𝑦))
3320, 32mpbird 166 1 ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3o 967  w3a 968  wcel 2136  wne 2336  wral 2444  wrex 2445  wss 3116  c0 3409   class class class wbr 3982   Po wpo 4272   Or wor 4273  Fincfn 6706  cr 7752   < clt 7933  cle 7934  cq 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-er 6501  df-en 6707  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-q 9558  df-rp 9590
This theorem is referenced by:  fiubm  10741  zfz1iso  10754
  Copyright terms: Public domain W3C validator