ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sonr GIF version

Theorem sonr 4177
Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.)
Assertion
Ref Expression
sonr ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem sonr
StepHypRef Expression
1 sopo 4173 . 2 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 poirr 4167 . 2 ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
31, 2sylan 279 1 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wcel 1448   class class class wbr 3875   Po wpo 4154   Or wor 4155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-v 2643  df-un 3025  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-po 4156  df-iso 4157
This theorem is referenced by:  sotricim  4183  sotritrieq  4185  soirri  4869  addnqprlemfl  7268  addnqprlemfu  7269  mulnqprlemfl  7284  mulnqprlemfu  7285  1ne0sr  7462
  Copyright terms: Public domain W3C validator