![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sonr | GIF version |
Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.) |
Ref | Expression |
---|---|
sonr | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sopo 4173 | . 2 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
2 | poirr 4167 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
3 | 1, 2 | sylan 279 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∈ wcel 1448 class class class wbr 3875 Po wpo 4154 Or wor 4155 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-v 2643 df-un 3025 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 df-po 4156 df-iso 4157 |
This theorem is referenced by: sotricim 4183 sotritrieq 4185 soirri 4869 addnqprlemfl 7268 addnqprlemfu 7269 mulnqprlemfl 7284 mulnqprlemfu 7285 1ne0sr 7462 |
Copyright terms: Public domain | W3C validator |