ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexvw GIF version

Theorem cbvexvw 1913
Description: Change bound variable. See cbvexv 1911 for a version with fewer disjoint variable conditions. (Contributed by NM, 19-Apr-2017.) Avoid ax-7 1441. (Revised by Gino Giotto, 25-Aug-2024.)
Hypothesis
Ref Expression
cbvalvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexvw (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvexvw
StepHypRef Expression
1 cbvalvw.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
21biimpd 143 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
32equcoms 1701 . . . 4 (𝑦 = 𝑥 → (𝜑𝜓))
43spimev 1854 . . 3 (𝜑 → ∃𝑦𝜓)
54exlimiv 1591 . 2 (∃𝑥𝜑 → ∃𝑦𝜓)
61biimprd 157 . . . 4 (𝑥 = 𝑦 → (𝜓𝜑))
76spimev 1854 . . 3 (𝜓 → ∃𝑥𝜑)
87exlimiv 1591 . 2 (∃𝑦𝜓 → ∃𝑥𝜑)
95, 8impbii 125 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454
This theorem is referenced by:  cbvrexvw  2701  prodmodc  11541
  Copyright terms: Public domain W3C validator