Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvexvw | GIF version |
Description: Change bound variable. See cbvexv 1906 for a version with fewer disjoint variable conditions. (Contributed by NM, 19-Apr-2017.) Avoid ax-7 1436. (Revised by Gino Giotto, 25-Aug-2024.) |
Ref | Expression |
---|---|
cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalvw.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 143 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
3 | 2 | equcoms 1696 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 → 𝜓)) |
4 | 3 | spimev 1849 | . . 3 ⊢ (𝜑 → ∃𝑦𝜓) |
5 | 4 | exlimiv 1586 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) |
6 | 1 | biimprd 157 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
7 | 6 | spimev 1849 | . . 3 ⊢ (𝜓 → ∃𝑥𝜑) |
8 | 7 | exlimiv 1586 | . 2 ⊢ (∃𝑦𝜓 → ∃𝑥𝜑) |
9 | 5, 8 | impbii 125 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 |
This theorem is referenced by: cbvrexvw 2697 prodmodc 11519 |
Copyright terms: Public domain | W3C validator |