| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvexvw | GIF version | ||
| Description: Change bound variable. See cbvexv 1943 for a version with fewer disjoint variable conditions. (Contributed by NM, 19-Apr-2017.) Avoid ax-7 1472. (Revised by GG, 25-Aug-2024.) |
| Ref | Expression |
|---|---|
| cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalvw.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpd 144 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 3 | 2 | equcoms 1732 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 → 𝜓)) |
| 4 | 3 | spimev 1885 | . . 3 ⊢ (𝜑 → ∃𝑦𝜓) |
| 5 | 4 | exlimiv 1622 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) |
| 6 | 1 | biimprd 158 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
| 7 | 6 | spimev 1885 | . . 3 ⊢ (𝜓 → ∃𝑥𝜑) |
| 8 | 7 | exlimiv 1622 | . 2 ⊢ (∃𝑦𝜓 → ∃𝑥𝜑) |
| 9 | 5, 8 | impbii 126 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 |
| This theorem is referenced by: cbvex2vw 1958 cbvrexvw 2744 prodmodc 11959 |
| Copyright terms: Public domain | W3C validator |