| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvexvw | GIF version | ||
| Description: Change bound variable. See cbvexv 1933 for a version with fewer disjoint variable conditions. (Contributed by NM, 19-Apr-2017.) Avoid ax-7 1462. (Revised by GG, 25-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvalvw.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpd 144 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | 
| 3 | 2 | equcoms 1722 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 → 𝜓)) | 
| 4 | 3 | spimev 1875 | . . 3 ⊢ (𝜑 → ∃𝑦𝜓) | 
| 5 | 4 | exlimiv 1612 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) | 
| 6 | 1 | biimprd 158 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) | 
| 7 | 6 | spimev 1875 | . . 3 ⊢ (𝜓 → ∃𝑥𝜑) | 
| 8 | 7 | exlimiv 1612 | . 2 ⊢ (∃𝑦𝜓 → ∃𝑥𝜑) | 
| 9 | 5, 8 | impbii 126 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 | 
| This theorem is referenced by: cbvex2vw 1948 cbvrexvw 2734 prodmodc 11743 | 
| Copyright terms: Public domain | W3C validator |