| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnxpid | GIF version | ||
| Description: The range of a square cross product. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| rnxpid | ⊢ ran (𝐴 × 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnxpss 5136 | . 2 ⊢ ran (𝐴 × 𝐴) ⊆ 𝐴 | |
| 2 | opelxp 4726 | . . . . . 6 ⊢ (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
| 3 | anidm 396 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 4 | 2, 3 | bitri 184 | . . . . 5 ⊢ (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ 𝑥 ∈ 𝐴) |
| 5 | opeq1 3836 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → 〈𝑥, 𝑥〉 = 〈𝑦, 𝑥〉) | |
| 6 | 5 | eleq1d 2278 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ 〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴))) |
| 7 | 6 | equcoms 1734 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ 〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴))) |
| 8 | 7 | biimpd 144 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) → 〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴))) |
| 9 | 8 | spimev 1887 | . . . . 5 ⊢ (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) → ∃𝑦〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴)) |
| 10 | 4, 9 | sylbir 135 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∃𝑦〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴)) |
| 11 | vex 2782 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | 11 | elrn2 4942 | . . . 4 ⊢ (𝑥 ∈ ran (𝐴 × 𝐴) ↔ ∃𝑦〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴)) |
| 13 | 10, 12 | sylibr 134 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ran (𝐴 × 𝐴)) |
| 14 | 13 | ssriv 3208 | . 2 ⊢ 𝐴 ⊆ ran (𝐴 × 𝐴) |
| 15 | 1, 14 | eqssi 3220 | 1 ⊢ ran (𝐴 × 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1375 ∃wex 1518 ∈ wcel 2180 〈cop 3649 × cxp 4694 ran crn 4697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-xp 4702 df-rel 4703 df-cnv 4704 df-dm 4706 df-rn 4707 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |