ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpid GIF version

Theorem rnxpid 5065
Description: The range of a square cross product. (Contributed by FL, 17-May-2010.)
Assertion
Ref Expression
rnxpid ran (𝐴 × 𝐴) = 𝐴

Proof of Theorem rnxpid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnxpss 5062 . 2 ran (𝐴 × 𝐴) ⊆ 𝐴
2 opelxp 4658 . . . . . 6 (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥𝐴𝑥𝐴))
3 anidm 396 . . . . . 6 ((𝑥𝐴𝑥𝐴) ↔ 𝑥𝐴)
42, 3bitri 184 . . . . 5 (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ 𝑥𝐴)
5 opeq1 3780 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑦, 𝑥⟩)
65eleq1d 2246 . . . . . . . 8 (𝑥 = 𝑦 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)))
76equcoms 1708 . . . . . . 7 (𝑦 = 𝑥 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)))
87biimpd 144 . . . . . 6 (𝑦 = 𝑥 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) → ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)))
98spimev 1861 . . . . 5 (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) → ∃𝑦𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))
104, 9sylbir 135 . . . 4 (𝑥𝐴 → ∃𝑦𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))
11 vex 2742 . . . . 5 𝑥 ∈ V
1211elrn2 4871 . . . 4 (𝑥 ∈ ran (𝐴 × 𝐴) ↔ ∃𝑦𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))
1310, 12sylibr 134 . . 3 (𝑥𝐴𝑥 ∈ ran (𝐴 × 𝐴))
1413ssriv 3161 . 2 𝐴 ⊆ ran (𝐴 × 𝐴)
151, 14eqssi 3173 1 ran (𝐴 × 𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  cop 3597   × cxp 4626  ran crn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-dm 4638  df-rn 4639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator