ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpid GIF version

Theorem rnxpid 5139
Description: The range of a square cross product. (Contributed by FL, 17-May-2010.)
Assertion
Ref Expression
rnxpid ran (𝐴 × 𝐴) = 𝐴

Proof of Theorem rnxpid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnxpss 5136 . 2 ran (𝐴 × 𝐴) ⊆ 𝐴
2 opelxp 4726 . . . . . 6 (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥𝐴𝑥𝐴))
3 anidm 396 . . . . . 6 ((𝑥𝐴𝑥𝐴) ↔ 𝑥𝐴)
42, 3bitri 184 . . . . 5 (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ 𝑥𝐴)
5 opeq1 3836 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑦, 𝑥⟩)
65eleq1d 2278 . . . . . . . 8 (𝑥 = 𝑦 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)))
76equcoms 1734 . . . . . . 7 (𝑦 = 𝑥 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)))
87biimpd 144 . . . . . 6 (𝑦 = 𝑥 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) → ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)))
98spimev 1887 . . . . 5 (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) → ∃𝑦𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))
104, 9sylbir 135 . . . 4 (𝑥𝐴 → ∃𝑦𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))
11 vex 2782 . . . . 5 𝑥 ∈ V
1211elrn2 4942 . . . 4 (𝑥 ∈ ran (𝐴 × 𝐴) ↔ ∃𝑦𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))
1310, 12sylibr 134 . . 3 (𝑥𝐴𝑥 ∈ ran (𝐴 × 𝐴))
1413ssriv 3208 . 2 𝐴 ⊆ ran (𝐴 × 𝐴)
151, 14eqssi 3220 1 ran (𝐴 × 𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1375  wex 1518  wcel 2180  cop 3649   × cxp 4694  ran crn 4697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-xp 4702  df-rel 4703  df-cnv 4704  df-dm 4706  df-rn 4707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator