Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rnxpid | GIF version |
Description: The range of a square cross product. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
rnxpid | ⊢ ran (𝐴 × 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnxpss 5042 | . 2 ⊢ ran (𝐴 × 𝐴) ⊆ 𝐴 | |
2 | opelxp 4641 | . . . . . 6 ⊢ (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
3 | anidm 394 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
4 | 2, 3 | bitri 183 | . . . . 5 ⊢ (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ 𝑥 ∈ 𝐴) |
5 | opeq1 3765 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → 〈𝑥, 𝑥〉 = 〈𝑦, 𝑥〉) | |
6 | 5 | eleq1d 2239 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ 〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴))) |
7 | 6 | equcoms 1701 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ 〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴))) |
8 | 7 | biimpd 143 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) → 〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴))) |
9 | 8 | spimev 1854 | . . . . 5 ⊢ (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) → ∃𝑦〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴)) |
10 | 4, 9 | sylbir 134 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∃𝑦〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴)) |
11 | vex 2733 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | 11 | elrn2 4853 | . . . 4 ⊢ (𝑥 ∈ ran (𝐴 × 𝐴) ↔ ∃𝑦〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴)) |
13 | 10, 12 | sylibr 133 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ran (𝐴 × 𝐴)) |
14 | 13 | ssriv 3151 | . 2 ⊢ 𝐴 ⊆ ran (𝐴 × 𝐴) |
15 | 1, 14 | eqssi 3163 | 1 ⊢ ran (𝐴 × 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 〈cop 3586 × cxp 4609 ran crn 4612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |