![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rnxpid | GIF version |
Description: The range of a square cross product. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
rnxpid | ⊢ ran (𝐴 × 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnxpss 5097 | . 2 ⊢ ran (𝐴 × 𝐴) ⊆ 𝐴 | |
2 | opelxp 4689 | . . . . . 6 ⊢ (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
3 | anidm 396 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
4 | 2, 3 | bitri 184 | . . . . 5 ⊢ (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ 𝑥 ∈ 𝐴) |
5 | opeq1 3804 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → 〈𝑥, 𝑥〉 = 〈𝑦, 𝑥〉) | |
6 | 5 | eleq1d 2262 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ 〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴))) |
7 | 6 | equcoms 1719 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ 〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴))) |
8 | 7 | biimpd 144 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) → 〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴))) |
9 | 8 | spimev 1872 | . . . . 5 ⊢ (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) → ∃𝑦〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴)) |
10 | 4, 9 | sylbir 135 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∃𝑦〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴)) |
11 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | 11 | elrn2 4904 | . . . 4 ⊢ (𝑥 ∈ ran (𝐴 × 𝐴) ↔ ∃𝑦〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴)) |
13 | 10, 12 | sylibr 134 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ran (𝐴 × 𝐴)) |
14 | 13 | ssriv 3183 | . 2 ⊢ 𝐴 ⊆ ran (𝐴 × 𝐴) |
15 | 1, 14 | eqssi 3195 | 1 ⊢ ran (𝐴 × 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 〈cop 3621 × cxp 4657 ran crn 4660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 df-dm 4669 df-rn 4670 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |