ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpid GIF version

Theorem rnxpid 4973
Description: The range of a square cross product. (Contributed by FL, 17-May-2010.)
Assertion
Ref Expression
rnxpid ran (𝐴 × 𝐴) = 𝐴

Proof of Theorem rnxpid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnxpss 4970 . 2 ran (𝐴 × 𝐴) ⊆ 𝐴
2 opelxp 4569 . . . . . 6 (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥𝐴𝑥𝐴))
3 anidm 393 . . . . . 6 ((𝑥𝐴𝑥𝐴) ↔ 𝑥𝐴)
42, 3bitri 183 . . . . 5 (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ 𝑥𝐴)
5 opeq1 3705 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑦, 𝑥⟩)
65eleq1d 2208 . . . . . . . 8 (𝑥 = 𝑦 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)))
76equcoms 1684 . . . . . . 7 (𝑦 = 𝑥 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)))
87biimpd 143 . . . . . 6 (𝑦 = 𝑥 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) → ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)))
98spimev 1833 . . . . 5 (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) → ∃𝑦𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))
104, 9sylbir 134 . . . 4 (𝑥𝐴 → ∃𝑦𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))
11 vex 2689 . . . . 5 𝑥 ∈ V
1211elrn2 4781 . . . 4 (𝑥 ∈ ran (𝐴 × 𝐴) ↔ ∃𝑦𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))
1310, 12sylibr 133 . . 3 (𝑥𝐴𝑥 ∈ ran (𝐴 × 𝐴))
1413ssriv 3101 . 2 𝐴 ⊆ ran (𝐴 × 𝐴)
151, 14eqssi 3113 1 ran (𝐴 × 𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  cop 3530   × cxp 4537  ran crn 4540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-dm 4549  df-rn 4550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator