| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnxpid | GIF version | ||
| Description: The range of a square cross product. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| rnxpid | ⊢ ran (𝐴 × 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnxpss 5119 | . 2 ⊢ ran (𝐴 × 𝐴) ⊆ 𝐴 | |
| 2 | opelxp 4709 | . . . . . 6 ⊢ (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
| 3 | anidm 396 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 4 | 2, 3 | bitri 184 | . . . . 5 ⊢ (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ 𝑥 ∈ 𝐴) |
| 5 | opeq1 3821 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → 〈𝑥, 𝑥〉 = 〈𝑦, 𝑥〉) | |
| 6 | 5 | eleq1d 2275 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ 〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴))) |
| 7 | 6 | equcoms 1732 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ 〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴))) |
| 8 | 7 | biimpd 144 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) → 〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴))) |
| 9 | 8 | spimev 1885 | . . . . 5 ⊢ (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) → ∃𝑦〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴)) |
| 10 | 4, 9 | sylbir 135 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∃𝑦〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴)) |
| 11 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | 11 | elrn2 4925 | . . . 4 ⊢ (𝑥 ∈ ran (𝐴 × 𝐴) ↔ ∃𝑦〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴)) |
| 13 | 10, 12 | sylibr 134 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ran (𝐴 × 𝐴)) |
| 14 | 13 | ssriv 3198 | . 2 ⊢ 𝐴 ⊆ ran (𝐴 × 𝐴) |
| 15 | 1, 14 | eqssi 3210 | 1 ⊢ ran (𝐴 × 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 〈cop 3637 × cxp 4677 ran crn 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-xp 4685 df-rel 4686 df-cnv 4687 df-dm 4689 df-rn 4690 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |