ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpid GIF version

Theorem rnxpid 5045
Description: The range of a square cross product. (Contributed by FL, 17-May-2010.)
Assertion
Ref Expression
rnxpid ran (𝐴 × 𝐴) = 𝐴

Proof of Theorem rnxpid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnxpss 5042 . 2 ran (𝐴 × 𝐴) ⊆ 𝐴
2 opelxp 4641 . . . . . 6 (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥𝐴𝑥𝐴))
3 anidm 394 . . . . . 6 ((𝑥𝐴𝑥𝐴) ↔ 𝑥𝐴)
42, 3bitri 183 . . . . 5 (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ 𝑥𝐴)
5 opeq1 3765 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑦, 𝑥⟩)
65eleq1d 2239 . . . . . . . 8 (𝑥 = 𝑦 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)))
76equcoms 1701 . . . . . . 7 (𝑦 = 𝑥 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)))
87biimpd 143 . . . . . 6 (𝑦 = 𝑥 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) → ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)))
98spimev 1854 . . . . 5 (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) → ∃𝑦𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))
104, 9sylbir 134 . . . 4 (𝑥𝐴 → ∃𝑦𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))
11 vex 2733 . . . . 5 𝑥 ∈ V
1211elrn2 4853 . . . 4 (𝑥 ∈ ran (𝐴 × 𝐴) ↔ ∃𝑦𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))
1310, 12sylibr 133 . . 3 (𝑥𝐴𝑥 ∈ ran (𝐴 × 𝐴))
1413ssriv 3151 . 2 𝐴 ⊆ ran (𝐴 × 𝐴)
151, 14eqssi 3163 1 ran (𝐴 × 𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  cop 3586   × cxp 4609  ran crn 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator