![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rnxpid | GIF version |
Description: The range of a square cross product. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
rnxpid | ⊢ ran (𝐴 × 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnxpss 5072 | . 2 ⊢ ran (𝐴 × 𝐴) ⊆ 𝐴 | |
2 | opelxp 4668 | . . . . . 6 ⊢ (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
3 | anidm 396 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
4 | 2, 3 | bitri 184 | . . . . 5 ⊢ (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ 𝑥 ∈ 𝐴) |
5 | opeq1 3790 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → 〈𝑥, 𝑥〉 = 〈𝑦, 𝑥〉) | |
6 | 5 | eleq1d 2256 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ 〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴))) |
7 | 6 | equcoms 1718 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) ↔ 〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴))) |
8 | 7 | biimpd 144 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) → 〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴))) |
9 | 8 | spimev 1871 | . . . . 5 ⊢ (〈𝑥, 𝑥〉 ∈ (𝐴 × 𝐴) → ∃𝑦〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴)) |
10 | 4, 9 | sylbir 135 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∃𝑦〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴)) |
11 | vex 2752 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | 11 | elrn2 4881 | . . . 4 ⊢ (𝑥 ∈ ran (𝐴 × 𝐴) ↔ ∃𝑦〈𝑦, 𝑥〉 ∈ (𝐴 × 𝐴)) |
13 | 10, 12 | sylibr 134 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ran (𝐴 × 𝐴)) |
14 | 13 | ssriv 3171 | . 2 ⊢ 𝐴 ⊆ ran (𝐴 × 𝐴) |
15 | 1, 14 | eqssi 3183 | 1 ⊢ ran (𝐴 × 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1363 ∃wex 1502 ∈ wcel 2158 〈cop 3607 × cxp 4636 ran crn 4639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-br 4016 df-opab 4077 df-xp 4644 df-rel 4645 df-cnv 4646 df-dm 4648 df-rn 4649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |