ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpid GIF version

Theorem rnxpid 5105
Description: The range of a square cross product. (Contributed by FL, 17-May-2010.)
Assertion
Ref Expression
rnxpid ran (𝐴 × 𝐴) = 𝐴

Proof of Theorem rnxpid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnxpss 5102 . 2 ran (𝐴 × 𝐴) ⊆ 𝐴
2 opelxp 4694 . . . . . 6 (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥𝐴𝑥𝐴))
3 anidm 396 . . . . . 6 ((𝑥𝐴𝑥𝐴) ↔ 𝑥𝐴)
42, 3bitri 184 . . . . 5 (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ 𝑥𝐴)
5 opeq1 3809 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑦, 𝑥⟩)
65eleq1d 2265 . . . . . . . 8 (𝑥 = 𝑦 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)))
76equcoms 1722 . . . . . . 7 (𝑦 = 𝑥 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)))
87biimpd 144 . . . . . 6 (𝑦 = 𝑥 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) → ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)))
98spimev 1875 . . . . 5 (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) → ∃𝑦𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))
104, 9sylbir 135 . . . 4 (𝑥𝐴 → ∃𝑦𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))
11 vex 2766 . . . . 5 𝑥 ∈ V
1211elrn2 4909 . . . 4 (𝑥 ∈ ran (𝐴 × 𝐴) ↔ ∃𝑦𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))
1310, 12sylibr 134 . . 3 (𝑥𝐴𝑥 ∈ ran (𝐴 × 𝐴))
1413ssriv 3188 . 2 𝐴 ⊆ ran (𝐴 × 𝐴)
151, 14eqssi 3200 1 ran (𝐴 × 𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  cop 3626   × cxp 4662  ran crn 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-dm 4674  df-rn 4675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator