![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rnxpid | GIF version |
Description: The range of a square cross product. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
rnxpid | ⊢ ran (𝐴 × 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnxpss 5062 | . 2 ⊢ ran (𝐴 × 𝐴) ⊆ 𝐴 | |
2 | opelxp 4658 | . . . . . 6 ⊢ (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
3 | anidm 396 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
4 | 2, 3 | bitri 184 | . . . . 5 ⊢ (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ 𝑥 ∈ 𝐴) |
5 | opeq1 3780 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑦, 𝑥⟩) | |
6 | 5 | eleq1d 2246 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))) |
7 | 6 | equcoms 1708 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))) |
8 | 7 | biimpd 144 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) → ⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴))) |
9 | 8 | spimev 1861 | . . . . 5 ⊢ (⟨𝑥, 𝑥⟩ ∈ (𝐴 × 𝐴) → ∃𝑦⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)) |
10 | 4, 9 | sylbir 135 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∃𝑦⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)) |
11 | vex 2742 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | 11 | elrn2 4871 | . . . 4 ⊢ (𝑥 ∈ ran (𝐴 × 𝐴) ↔ ∃𝑦⟨𝑦, 𝑥⟩ ∈ (𝐴 × 𝐴)) |
13 | 10, 12 | sylibr 134 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ran (𝐴 × 𝐴)) |
14 | 13 | ssriv 3161 | . 2 ⊢ 𝐴 ⊆ ran (𝐴 × 𝐴) |
15 | 1, 14 | eqssi 3173 | 1 ⊢ ran (𝐴 × 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ⟨cop 3597 × cxp 4626 ran crn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 df-dm 4638 df-rn 4639 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |