ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spimv GIF version

Theorem spimv 1740
Description: A version of spim 1674 with a distinct variable requirement instead of a bound-variable hypothesis. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spimv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimv (∀𝑥𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spimv
StepHypRef Expression
1 nfv 1467 . 2 𝑥𝜓
2 spimv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2spim 1674 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473
This theorem depends on definitions:  df-bi 116  df-nf 1396
This theorem is referenced by:  aev  1741  ax16i  1787  spv  1789  reu6  2805  el  4019
  Copyright terms: Public domain W3C validator