Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spimv | GIF version |
Description: A version of spim 1718 with a distinct variable requirement instead of a bound-variable hypothesis. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
spimv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spimv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1508 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | spimv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
3 | 1, 2 | spim 1718 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1441 |
This theorem is referenced by: aev 1792 ax16i 1838 spv 1840 cbvalvw 1899 reu6 2901 el 4138 |
Copyright terms: Public domain | W3C validator |