| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spimv | GIF version | ||
| Description: A version of spim 1762 with a distinct variable requirement instead of a bound-variable hypothesis. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| spimv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| spimv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | spimv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | spim 1762 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: aev 1836 ax16i 1882 spv 1884 cbvalvw 1944 reu6 2969 el 4238 |
| Copyright terms: Public domain | W3C validator |