ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  drnf2 GIF version

Theorem drnf2 1695
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
drex2.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
drnf2 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))

Proof of Theorem drnf2
StepHypRef Expression
1 drex2.1 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
21dral2 1692 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓))
31, 2imbi12d 233 . . 3 (∀𝑥 𝑥 = 𝑦 → ((𝜑 → ∀𝑧𝜑) ↔ (𝜓 → ∀𝑧𝜓)))
43dral2 1692 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝜑 → ∀𝑧𝜑) ↔ ∀𝑧(𝜓 → ∀𝑧𝜓)))
5 df-nf 1420 . 2 (Ⅎ𝑧𝜑 ↔ ∀𝑧(𝜑 → ∀𝑧𝜑))
6 df-nf 1420 . 2 (Ⅎ𝑧𝜓 ↔ ∀𝑧(𝜓 → ∀𝑧𝜓))
74, 5, 63bitr4g 222 1 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1312  wnf 1419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497
This theorem depends on definitions:  df-bi 116  df-nf 1420
This theorem is referenced by:  nfsbxy  1893  nfsbxyt  1894  drnfc2  2274
  Copyright terms: Public domain W3C validator