![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > drnf2 | GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
drex2.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
drnf2 | ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drex2.1 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | dral2 1731 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓)) |
3 | 1, 2 | imbi12d 234 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝜑 → ∀𝑧𝜑) ↔ (𝜓 → ∀𝑧𝜓))) |
4 | 3 | dral2 1731 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝜑 → ∀𝑧𝜑) ↔ ∀𝑧(𝜓 → ∀𝑧𝜓))) |
5 | df-nf 1461 | . 2 ⊢ (Ⅎ𝑧𝜑 ↔ ∀𝑧(𝜑 → ∀𝑧𝜑)) | |
6 | df-nf 1461 | . 2 ⊢ (Ⅎ𝑧𝜓 ↔ ∀𝑧(𝜓 → ∀𝑧𝜓)) | |
7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 Ⅎwnf 1460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: nfsbxy 1942 nfsbxyt 1943 drnfc2 2337 |
Copyright terms: Public domain | W3C validator |