ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  drnf2 GIF version

Theorem drnf2 1745
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
drex2.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
drnf2 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))

Proof of Theorem drnf2
StepHypRef Expression
1 drex2.1 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
21dral2 1742 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓))
31, 2imbi12d 234 . . 3 (∀𝑥 𝑥 = 𝑦 → ((𝜑 → ∀𝑧𝜑) ↔ (𝜓 → ∀𝑧𝜓)))
43dral2 1742 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝜑 → ∀𝑧𝜑) ↔ ∀𝑧(𝜓 → ∀𝑧𝜓)))
5 df-nf 1472 . 2 (Ⅎ𝑧𝜑 ↔ ∀𝑧(𝜑 → ∀𝑧𝜑))
6 df-nf 1472 . 2 (Ⅎ𝑧𝜓 ↔ ∀𝑧(𝜓 → ∀𝑧𝜓))
74, 5, 63bitr4g 223 1 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  wnf 1471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  nfsbxy  1958  nfsbxyt  1959  drnfc2  2354
  Copyright terms: Public domain W3C validator