ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelfvdm GIF version

Theorem relelfvdm 5280
Description: If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.)
Assertion
Ref Expression
relelfvdm ((Rel 𝐹𝐴 ∈ (𝐹𝐵)) → 𝐵 ∈ dom 𝐹)

Proof of Theorem relelfvdm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfv 5250 . . . . . 6 (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)))
2 exsimpr 1550 . . . . . 6 (∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)) → ∃𝑥𝑦(𝐵𝐹𝑦𝑦 = 𝑥))
31, 2sylbi 119 . . . . 5 (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝑦(𝐵𝐹𝑦𝑦 = 𝑥))
4 equsb1 1710 . . . . . . . 8 [𝑥 / 𝑦]𝑦 = 𝑥
5 spsbbi 1767 . . . . . . . 8 (∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥) → ([𝑥 / 𝑦]𝐵𝐹𝑦 ↔ [𝑥 / 𝑦]𝑦 = 𝑥))
64, 5mpbiri 166 . . . . . . 7 (∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥) → [𝑥 / 𝑦]𝐵𝐹𝑦)
7 nfv 1462 . . . . . . . 8 𝑦 𝐵𝐹𝑥
8 breq2 3815 . . . . . . . 8 (𝑦 = 𝑥 → (𝐵𝐹𝑦𝐵𝐹𝑥))
97, 8sbie 1716 . . . . . . 7 ([𝑥 / 𝑦]𝐵𝐹𝑦𝐵𝐹𝑥)
106, 9sylib 120 . . . . . 6 (∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥) → 𝐵𝐹𝑥)
1110eximi 1532 . . . . 5 (∃𝑥𝑦(𝐵𝐹𝑦𝑦 = 𝑥) → ∃𝑥 𝐵𝐹𝑥)
123, 11syl 14 . . . 4 (𝐴 ∈ (𝐹𝐵) → ∃𝑥 𝐵𝐹𝑥)
1312anim2i 334 . . 3 ((Rel 𝐹𝐴 ∈ (𝐹𝐵)) → (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥))
14 19.42v 1829 . . 3 (∃𝑥(Rel 𝐹𝐵𝐹𝑥) ↔ (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥))
1513, 14sylibr 132 . 2 ((Rel 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥(Rel 𝐹𝐵𝐹𝑥))
16 releldm 4627 . . 3 ((Rel 𝐹𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹)
1716exlimiv 1530 . 2 (∃𝑥(Rel 𝐹𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹)
1815, 17syl 14 1 ((Rel 𝐹𝐴 ∈ (𝐹𝐵)) → 𝐵 ∈ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1283  wex 1422  wcel 1434  [wsb 1687   class class class wbr 3811  dom cdm 4400  Rel wrel 4405  cfv 4968
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-xp 4406  df-rel 4407  df-dm 4410  df-iota 4933  df-fv 4976
This theorem is referenced by:  elmpt2cl  5776  mpt2xopn0yelv  5935  eluzel2  8918  hashinfom  10020
  Copyright terms: Public domain W3C validator