ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelfvdm GIF version

Theorem relelfvdm 5608
Description: If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.)
Assertion
Ref Expression
relelfvdm ((Rel 𝐹𝐴 ∈ (𝐹𝐵)) → 𝐵 ∈ dom 𝐹)

Proof of Theorem relelfvdm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfv 5574 . . . . . 6 (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)))
2 exsimpr 1641 . . . . . 6 (∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)) → ∃𝑥𝑦(𝐵𝐹𝑦𝑦 = 𝑥))
31, 2sylbi 121 . . . . 5 (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝑦(𝐵𝐹𝑦𝑦 = 𝑥))
4 equsb1 1808 . . . . . . . 8 [𝑥 / 𝑦]𝑦 = 𝑥
5 spsbbi 1867 . . . . . . . 8 (∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥) → ([𝑥 / 𝑦]𝐵𝐹𝑦 ↔ [𝑥 / 𝑦]𝑦 = 𝑥))
64, 5mpbiri 168 . . . . . . 7 (∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥) → [𝑥 / 𝑦]𝐵𝐹𝑦)
7 nfv 1551 . . . . . . . 8 𝑦 𝐵𝐹𝑥
8 breq2 4048 . . . . . . . 8 (𝑦 = 𝑥 → (𝐵𝐹𝑦𝐵𝐹𝑥))
97, 8sbie 1814 . . . . . . 7 ([𝑥 / 𝑦]𝐵𝐹𝑦𝐵𝐹𝑥)
106, 9sylib 122 . . . . . 6 (∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥) → 𝐵𝐹𝑥)
1110eximi 1623 . . . . 5 (∃𝑥𝑦(𝐵𝐹𝑦𝑦 = 𝑥) → ∃𝑥 𝐵𝐹𝑥)
123, 11syl 14 . . . 4 (𝐴 ∈ (𝐹𝐵) → ∃𝑥 𝐵𝐹𝑥)
1312anim2i 342 . . 3 ((Rel 𝐹𝐴 ∈ (𝐹𝐵)) → (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥))
14 19.42v 1930 . . 3 (∃𝑥(Rel 𝐹𝐵𝐹𝑥) ↔ (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥))
1513, 14sylibr 134 . 2 ((Rel 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥(Rel 𝐹𝐵𝐹𝑥))
16 releldm 4913 . . 3 ((Rel 𝐹𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹)
1716exlimiv 1621 . 2 (∃𝑥(Rel 𝐹𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹)
1815, 17syl 14 1 ((Rel 𝐹𝐴 ∈ (𝐹𝐵)) → 𝐵 ∈ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371  wex 1515  [wsb 1785  wcel 2176   class class class wbr 4044  dom cdm 4675  Rel wrel 4680  cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-dm 4685  df-iota 5232  df-fv 5279
This theorem is referenced by:  mptrcl  5662  elfvmptrab1  5674  elmpocl  6141  oprssdmm  6257  mpoxopn0yelv  6325  eluzel2  9653  hashinfom  10923  basmex  12891  basmexd  12892  relelbasov  12894  ismgmn0  13190  rrgmex  14023  lssmex  14117  lidlmex  14237  2idlmex  14263  istopon  14485  istps  14504  topontopn  14509  eltg4i  14527  eltg3  14529  tg1  14531  tg2  14532  tgclb  14537  cldrcl  14574  neiss2  14614  lmrcl  14663  cnprcl2k  14678  metflem  14821  xmetf  14822  ismet2  14826  xmeteq0  14831  xmettri2  14833  xmetpsmet  14841  xmetres2  14851  blfvalps  14857  blex  14859  blvalps  14860  blval  14861  blfps  14881  blf  14882  mopnval  14914  isxms2  14924  comet  14971  1vgrex  15617
  Copyright terms: Public domain W3C validator