| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relelfvdm | GIF version | ||
| Description: If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.) |
| Ref | Expression |
|---|---|
| relelfvdm | ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → 𝐵 ∈ dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfv 5559 | . . . . . 6 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) | |
| 2 | exsimpr 1632 | . . . . . 6 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)) → ∃𝑥∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)) | |
| 3 | 1, 2 | sylbi 121 | . . . . 5 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑥∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)) |
| 4 | equsb1 1799 | . . . . . . . 8 ⊢ [𝑥 / 𝑦]𝑦 = 𝑥 | |
| 5 | spsbbi 1858 | . . . . . . . 8 ⊢ (∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → ([𝑥 / 𝑦]𝐵𝐹𝑦 ↔ [𝑥 / 𝑦]𝑦 = 𝑥)) | |
| 6 | 4, 5 | mpbiri 168 | . . . . . . 7 ⊢ (∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → [𝑥 / 𝑦]𝐵𝐹𝑦) |
| 7 | nfv 1542 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝐵𝐹𝑥 | |
| 8 | breq2 4038 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐵𝐹𝑦 ↔ 𝐵𝐹𝑥)) | |
| 9 | 7, 8 | sbie 1805 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]𝐵𝐹𝑦 ↔ 𝐵𝐹𝑥) |
| 10 | 6, 9 | sylib 122 | . . . . . 6 ⊢ (∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → 𝐵𝐹𝑥) |
| 11 | 10 | eximi 1614 | . . . . 5 ⊢ (∃𝑥∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → ∃𝑥 𝐵𝐹𝑥) |
| 12 | 3, 11 | syl 14 | . . . 4 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑥 𝐵𝐹𝑥) |
| 13 | 12 | anim2i 342 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥)) |
| 14 | 19.42v 1921 | . . 3 ⊢ (∃𝑥(Rel 𝐹 ∧ 𝐵𝐹𝑥) ↔ (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥)) | |
| 15 | 13, 14 | sylibr 134 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → ∃𝑥(Rel 𝐹 ∧ 𝐵𝐹𝑥)) |
| 16 | releldm 4902 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹) | |
| 17 | 16 | exlimiv 1612 | . 2 ⊢ (∃𝑥(Rel 𝐹 ∧ 𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹) |
| 18 | 15, 17 | syl 14 | 1 ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → 𝐵 ∈ dom 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 [wsb 1776 ∈ wcel 2167 class class class wbr 4034 dom cdm 4664 Rel wrel 4669 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-dm 4674 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: mptrcl 5647 elfvmptrab1 5659 elmpocl 6122 oprssdmm 6238 mpoxopn0yelv 6306 eluzel2 9625 hashinfom 10889 basmex 12764 basmexd 12765 relelbasov 12767 ismgmn0 13062 rrgmex 13895 lssmex 13989 lidlmex 14109 2idlmex 14135 istopon 14357 istps 14376 topontopn 14381 eltg4i 14399 eltg3 14401 tg1 14403 tg2 14404 tgclb 14409 cldrcl 14446 neiss2 14486 lmrcl 14535 cnprcl2k 14550 metflem 14693 xmetf 14694 ismet2 14698 xmeteq0 14703 xmettri2 14705 xmetpsmet 14713 xmetres2 14723 blfvalps 14729 blex 14731 blvalps 14732 blval 14733 blfps 14753 blf 14754 mopnval 14786 isxms2 14796 comet 14843 |
| Copyright terms: Public domain | W3C validator |