![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relelfvdm | GIF version |
Description: If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.) |
Ref | Expression |
---|---|
relelfvdm | ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → 𝐵 ∈ dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfv 5514 | . . . . . 6 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) | |
2 | exsimpr 1618 | . . . . . 6 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)) → ∃𝑥∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)) | |
3 | 1, 2 | sylbi 121 | . . . . 5 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑥∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)) |
4 | equsb1 1785 | . . . . . . . 8 ⊢ [𝑥 / 𝑦]𝑦 = 𝑥 | |
5 | spsbbi 1844 | . . . . . . . 8 ⊢ (∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → ([𝑥 / 𝑦]𝐵𝐹𝑦 ↔ [𝑥 / 𝑦]𝑦 = 𝑥)) | |
6 | 4, 5 | mpbiri 168 | . . . . . . 7 ⊢ (∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → [𝑥 / 𝑦]𝐵𝐹𝑦) |
7 | nfv 1528 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝐵𝐹𝑥 | |
8 | breq2 4008 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐵𝐹𝑦 ↔ 𝐵𝐹𝑥)) | |
9 | 7, 8 | sbie 1791 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]𝐵𝐹𝑦 ↔ 𝐵𝐹𝑥) |
10 | 6, 9 | sylib 122 | . . . . . 6 ⊢ (∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → 𝐵𝐹𝑥) |
11 | 10 | eximi 1600 | . . . . 5 ⊢ (∃𝑥∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → ∃𝑥 𝐵𝐹𝑥) |
12 | 3, 11 | syl 14 | . . . 4 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑥 𝐵𝐹𝑥) |
13 | 12 | anim2i 342 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥)) |
14 | 19.42v 1906 | . . 3 ⊢ (∃𝑥(Rel 𝐹 ∧ 𝐵𝐹𝑥) ↔ (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥)) | |
15 | 13, 14 | sylibr 134 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → ∃𝑥(Rel 𝐹 ∧ 𝐵𝐹𝑥)) |
16 | releldm 4863 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹) | |
17 | 16 | exlimiv 1598 | . 2 ⊢ (∃𝑥(Rel 𝐹 ∧ 𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹) |
18 | 15, 17 | syl 14 | 1 ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → 𝐵 ∈ dom 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 ∃wex 1492 [wsb 1762 ∈ wcel 2148 class class class wbr 4004 dom cdm 4627 Rel wrel 4632 ‘cfv 5217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-xp 4633 df-rel 4634 df-dm 4637 df-iota 5179 df-fv 5225 |
This theorem is referenced by: mptrcl 5599 elfvmptrab1 5611 elmpocl 6069 oprssdmm 6172 mpoxopn0yelv 6240 eluzel2 9533 hashinfom 10758 basmex 12521 basmexd 12522 ismgmn0 12777 istopon 13516 istps 13535 topontopn 13540 eltg4i 13558 eltg3 13560 tg1 13562 tg2 13563 tgclb 13568 cldrcl 13605 neiss2 13645 lmrcl 13694 cnprcl2k 13709 metflem 13852 xmetf 13853 ismet2 13857 xmeteq0 13862 xmettri2 13864 xmetpsmet 13872 xmetres2 13882 blfvalps 13888 blex 13890 blvalps 13891 blval 13892 blfps 13912 blf 13913 mopnval 13945 isxms2 13955 comet 14002 |
Copyright terms: Public domain | W3C validator |