| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relelfvdm | GIF version | ||
| Description: If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.) |
| Ref | Expression |
|---|---|
| relelfvdm | ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → 𝐵 ∈ dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfv 5559 | . . . . . 6 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) | |
| 2 | exsimpr 1632 | . . . . . 6 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)) → ∃𝑥∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)) | |
| 3 | 1, 2 | sylbi 121 | . . . . 5 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑥∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)) |
| 4 | equsb1 1799 | . . . . . . . 8 ⊢ [𝑥 / 𝑦]𝑦 = 𝑥 | |
| 5 | spsbbi 1858 | . . . . . . . 8 ⊢ (∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → ([𝑥 / 𝑦]𝐵𝐹𝑦 ↔ [𝑥 / 𝑦]𝑦 = 𝑥)) | |
| 6 | 4, 5 | mpbiri 168 | . . . . . . 7 ⊢ (∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → [𝑥 / 𝑦]𝐵𝐹𝑦) |
| 7 | nfv 1542 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝐵𝐹𝑥 | |
| 8 | breq2 4038 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐵𝐹𝑦 ↔ 𝐵𝐹𝑥)) | |
| 9 | 7, 8 | sbie 1805 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]𝐵𝐹𝑦 ↔ 𝐵𝐹𝑥) |
| 10 | 6, 9 | sylib 122 | . . . . . 6 ⊢ (∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → 𝐵𝐹𝑥) |
| 11 | 10 | eximi 1614 | . . . . 5 ⊢ (∃𝑥∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → ∃𝑥 𝐵𝐹𝑥) |
| 12 | 3, 11 | syl 14 | . . . 4 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑥 𝐵𝐹𝑥) |
| 13 | 12 | anim2i 342 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥)) |
| 14 | 19.42v 1921 | . . 3 ⊢ (∃𝑥(Rel 𝐹 ∧ 𝐵𝐹𝑥) ↔ (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥)) | |
| 15 | 13, 14 | sylibr 134 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → ∃𝑥(Rel 𝐹 ∧ 𝐵𝐹𝑥)) |
| 16 | releldm 4902 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹) | |
| 17 | 16 | exlimiv 1612 | . 2 ⊢ (∃𝑥(Rel 𝐹 ∧ 𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹) |
| 18 | 15, 17 | syl 14 | 1 ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → 𝐵 ∈ dom 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 [wsb 1776 ∈ wcel 2167 class class class wbr 4034 dom cdm 4664 Rel wrel 4669 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-dm 4674 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: mptrcl 5647 elfvmptrab1 5659 elmpocl 6122 oprssdmm 6238 mpoxopn0yelv 6306 eluzel2 9623 hashinfom 10887 basmex 12762 basmexd 12763 relelbasov 12765 ismgmn0 13060 rrgmex 13893 lssmex 13987 lidlmex 14107 2idlmex 14133 istopon 14333 istps 14352 topontopn 14357 eltg4i 14375 eltg3 14377 tg1 14379 tg2 14380 tgclb 14385 cldrcl 14422 neiss2 14462 lmrcl 14511 cnprcl2k 14526 metflem 14669 xmetf 14670 ismet2 14674 xmeteq0 14679 xmettri2 14681 xmetpsmet 14689 xmetres2 14699 blfvalps 14705 blex 14707 blvalps 14708 blval 14709 blfps 14729 blf 14730 mopnval 14762 isxms2 14772 comet 14819 |
| Copyright terms: Public domain | W3C validator |