ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelfvdm GIF version

Theorem relelfvdm 5461
Description: If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.)
Assertion
Ref Expression
relelfvdm ((Rel 𝐹𝐴 ∈ (𝐹𝐵)) → 𝐵 ∈ dom 𝐹)

Proof of Theorem relelfvdm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfv 5427 . . . . . 6 (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)))
2 exsimpr 1598 . . . . . 6 (∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)) → ∃𝑥𝑦(𝐵𝐹𝑦𝑦 = 𝑥))
31, 2sylbi 120 . . . . 5 (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝑦(𝐵𝐹𝑦𝑦 = 𝑥))
4 equsb1 1759 . . . . . . . 8 [𝑥 / 𝑦]𝑦 = 𝑥
5 spsbbi 1817 . . . . . . . 8 (∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥) → ([𝑥 / 𝑦]𝐵𝐹𝑦 ↔ [𝑥 / 𝑦]𝑦 = 𝑥))
64, 5mpbiri 167 . . . . . . 7 (∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥) → [𝑥 / 𝑦]𝐵𝐹𝑦)
7 nfv 1509 . . . . . . . 8 𝑦 𝐵𝐹𝑥
8 breq2 3941 . . . . . . . 8 (𝑦 = 𝑥 → (𝐵𝐹𝑦𝐵𝐹𝑥))
97, 8sbie 1765 . . . . . . 7 ([𝑥 / 𝑦]𝐵𝐹𝑦𝐵𝐹𝑥)
106, 9sylib 121 . . . . . 6 (∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥) → 𝐵𝐹𝑥)
1110eximi 1580 . . . . 5 (∃𝑥𝑦(𝐵𝐹𝑦𝑦 = 𝑥) → ∃𝑥 𝐵𝐹𝑥)
123, 11syl 14 . . . 4 (𝐴 ∈ (𝐹𝐵) → ∃𝑥 𝐵𝐹𝑥)
1312anim2i 340 . . 3 ((Rel 𝐹𝐴 ∈ (𝐹𝐵)) → (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥))
14 19.42v 1879 . . 3 (∃𝑥(Rel 𝐹𝐵𝐹𝑥) ↔ (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥))
1513, 14sylibr 133 . 2 ((Rel 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥(Rel 𝐹𝐵𝐹𝑥))
16 releldm 4782 . . 3 ((Rel 𝐹𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹)
1716exlimiv 1578 . 2 (∃𝑥(Rel 𝐹𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹)
1815, 17syl 14 1 ((Rel 𝐹𝐴 ∈ (𝐹𝐵)) → 𝐵 ∈ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1330  wex 1469  wcel 1481  [wsb 1736   class class class wbr 3937  dom cdm 4547  Rel wrel 4552  cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-xp 4553  df-rel 4554  df-dm 4557  df-iota 5096  df-fv 5139
This theorem is referenced by:  mptrcl  5511  elfvmptrab1  5523  elmpocl  5976  oprssdmm  6077  mpoxopn0yelv  6144  eluzel2  9355  hashinfom  10556  istopon  12219  istps  12238  topontopn  12243  eltg4i  12263  eltg3  12265  tg1  12267  tg2  12268  tgclb  12273  cldrcl  12310  neiss2  12350  lmrcl  12399  cnprcl2k  12414  metflem  12557  xmetf  12558  ismet2  12562  xmeteq0  12567  xmettri2  12569  xmetpsmet  12577  xmetres2  12587  blfvalps  12593  blex  12595  blvalps  12596  blval  12597  blfps  12617  blf  12618  mopnval  12650  isxms2  12660  comet  12707
  Copyright terms: Public domain W3C validator