| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relelfvdm | GIF version | ||
| Description: If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.) |
| Ref | Expression |
|---|---|
| relelfvdm | ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → 𝐵 ∈ dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfv 5597 | . . . . . 6 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) | |
| 2 | exsimpr 1642 | . . . . . 6 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)) → ∃𝑥∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)) | |
| 3 | 1, 2 | sylbi 121 | . . . . 5 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑥∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)) |
| 4 | equsb1 1809 | . . . . . . . 8 ⊢ [𝑥 / 𝑦]𝑦 = 𝑥 | |
| 5 | spsbbi 1868 | . . . . . . . 8 ⊢ (∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → ([𝑥 / 𝑦]𝐵𝐹𝑦 ↔ [𝑥 / 𝑦]𝑦 = 𝑥)) | |
| 6 | 4, 5 | mpbiri 168 | . . . . . . 7 ⊢ (∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → [𝑥 / 𝑦]𝐵𝐹𝑦) |
| 7 | nfv 1552 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝐵𝐹𝑥 | |
| 8 | breq2 4063 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐵𝐹𝑦 ↔ 𝐵𝐹𝑥)) | |
| 9 | 7, 8 | sbie 1815 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]𝐵𝐹𝑦 ↔ 𝐵𝐹𝑥) |
| 10 | 6, 9 | sylib 122 | . . . . . 6 ⊢ (∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → 𝐵𝐹𝑥) |
| 11 | 10 | eximi 1624 | . . . . 5 ⊢ (∃𝑥∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → ∃𝑥 𝐵𝐹𝑥) |
| 12 | 3, 11 | syl 14 | . . . 4 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑥 𝐵𝐹𝑥) |
| 13 | 12 | anim2i 342 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥)) |
| 14 | 19.42v 1931 | . . 3 ⊢ (∃𝑥(Rel 𝐹 ∧ 𝐵𝐹𝑥) ↔ (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥)) | |
| 15 | 13, 14 | sylibr 134 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → ∃𝑥(Rel 𝐹 ∧ 𝐵𝐹𝑥)) |
| 16 | releldm 4932 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹) | |
| 17 | 16 | exlimiv 1622 | . 2 ⊢ (∃𝑥(Rel 𝐹 ∧ 𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹) |
| 18 | 15, 17 | syl 14 | 1 ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → 𝐵 ∈ dom 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 ∃wex 1516 [wsb 1786 ∈ wcel 2178 class class class wbr 4059 dom cdm 4693 Rel wrel 4698 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-dm 4703 df-iota 5251 df-fv 5298 |
| This theorem is referenced by: mptrcl 5685 elfvmptrab1 5697 elmpocl 6164 oprssdmm 6280 mpoxopn0yelv 6348 eluzel2 9688 hashinfom 10960 basmex 13006 basmexd 13007 relelbasov 13009 ismgmn0 13305 rrgmex 14138 lssmex 14232 lidlmex 14352 2idlmex 14378 istopon 14600 istps 14619 topontopn 14624 eltg4i 14642 eltg3 14644 tg1 14646 tg2 14647 tgclb 14652 cldrcl 14689 neiss2 14729 lmrcl 14778 cnprcl2k 14793 metflem 14936 xmetf 14937 ismet2 14941 xmeteq0 14946 xmettri2 14948 xmetpsmet 14956 xmetres2 14966 blfvalps 14972 blex 14974 blvalps 14975 blval 14976 blfps 14996 blf 14997 mopnval 15029 isxms2 15039 comet 15086 1vgrex 15734 umgrnloopvv 15825 |
| Copyright terms: Public domain | W3C validator |