ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim2d GIF version

Theorem orim2d 788
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim2d (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))

Proof of Theorem orim2d
StepHypRef Expression
1 idd 21 . 2 (𝜑 → (𝜃𝜃))
2 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 2orim12d 786 1 (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orim2  789  orbi2d  790  pm2.82  812  stdcndcOLD  846  pm2.13dc  885  exmid1dc  4201  acexmidlemcase  5870  poxp  6233  fodjuomnilemdc  7142  omniwomnimkv  7165  exmidontriimlem1  7220  indpi  7341  suplocexprlemloc  7720  nneoor  9355  uzp1  9561  maxabslemlub  11216  xrmaxiflemlub  11256  exmidunben  12427  bj-nn0suc  14719  sbthomlem  14776
  Copyright terms: Public domain W3C validator