Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orim2d | GIF version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
Ref | Expression |
---|---|
orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orim2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | orim12d 776 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orim2 779 orbi2d 780 pm2.82 802 stdcndcOLD 836 pm2.13dc 875 exmid1dc 4179 acexmidlemcase 5837 poxp 6200 fodjuomnilemdc 7108 omniwomnimkv 7131 exmidontriimlem1 7177 indpi 7283 suplocexprlemloc 7662 nneoor 9293 uzp1 9499 maxabslemlub 11149 xrmaxiflemlub 11189 exmidunben 12359 bj-nn0suc 13856 sbthomlem 13914 |
Copyright terms: Public domain | W3C validator |