ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim2d GIF version

Theorem orim2d 788
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim2d (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))

Proof of Theorem orim2d
StepHypRef Expression
1 idd 21 . 2 (𝜑 → (𝜃𝜃))
2 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 2orim12d 786 1 (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orim2  789  orbi2d  790  pm2.82  812  stdcndcOLD  846  pm2.13dc  885  exmid1dc  4200  acexmidlemcase  5869  poxp  6232  fodjuomnilemdc  7141  omniwomnimkv  7164  exmidontriimlem1  7219  indpi  7340  suplocexprlemloc  7719  nneoor  9354  uzp1  9560  maxabslemlub  11215  xrmaxiflemlub  11255  exmidunben  12426  bj-nn0suc  14686  sbthomlem  14743
  Copyright terms: Public domain W3C validator