| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orim2d | GIF version | ||
| Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
| Ref | Expression |
|---|---|
| orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orim2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | orim12d 787 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orim2 790 orbi2d 791 pm2.82 813 stdcndcOLD 847 pm2.13dc 886 exmid1dc 4234 acexmidlemcase 5920 poxp 6294 fodjuomnilemdc 7214 omniwomnimkv 7237 exmidontriimlem1 7293 indpi 7414 suplocexprlemloc 7793 nneoor 9433 uzp1 9640 maxabslemlub 11377 xrmaxiflemlub 11418 nninfctlemfo 12220 exmidunben 12656 bj-nn0suc 15657 sbthomlem 15719 |
| Copyright terms: Public domain | W3C validator |