ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim2d GIF version

Theorem orim2d 792
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim2d (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))

Proof of Theorem orim2d
StepHypRef Expression
1 idd 21 . 2 (𝜑 → (𝜃𝜃))
2 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 2orim12d 790 1 (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orim2  793  orbi2d  794  pm2.82  816  stdcndcOLD  850  pm2.13dc  889  exmid1dc  4263  acexmidlemcase  5969  poxp  6348  fodjuomnilemdc  7279  omniwomnimkv  7302  exmidontriimlem1  7371  indpi  7497  suplocexprlemloc  7876  nneoor  9517  uzp1  9724  maxabslemlub  11684  xrmaxiflemlub  11725  nninfctlemfo  12527  exmidunben  12963  bj-nn0suc  16237  sbthomlem  16304
  Copyright terms: Public domain W3C validator