ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim2d GIF version

Theorem orim2d 783
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim2d (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))

Proof of Theorem orim2d
StepHypRef Expression
1 idd 21 . 2 (𝜑 → (𝜃𝜃))
2 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 2orim12d 781 1 (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  orim2  784  orbi2d  785  pm2.82  807  stdcndcOLD  841  pm2.13dc  880  exmid1dc  4186  acexmidlemcase  5848  poxp  6211  fodjuomnilemdc  7120  omniwomnimkv  7143  exmidontriimlem1  7198  indpi  7304  suplocexprlemloc  7683  nneoor  9314  uzp1  9520  maxabslemlub  11171  xrmaxiflemlub  11211  exmidunben  12381  bj-nn0suc  13999  sbthomlem  14057
  Copyright terms: Public domain W3C validator