| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orim2d | GIF version | ||
| Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
| Ref | Expression |
|---|---|
| orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orim2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | orim12d 790 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orim2 793 orbi2d 794 pm2.82 816 stdcndcOLD 850 pm2.13dc 889 exmid1dc 4263 acexmidlemcase 5969 poxp 6348 fodjuomnilemdc 7279 omniwomnimkv 7302 exmidontriimlem1 7371 indpi 7497 suplocexprlemloc 7876 nneoor 9517 uzp1 9724 maxabslemlub 11684 xrmaxiflemlub 11725 nninfctlemfo 12527 exmidunben 12963 bj-nn0suc 16237 sbthomlem 16304 |
| Copyright terms: Public domain | W3C validator |