![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orim2d | GIF version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
Ref | Expression |
---|---|
orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orim2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | orim12d 787 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orim2 790 orbi2d 791 pm2.82 813 stdcndcOLD 847 pm2.13dc 886 exmid1dc 4229 acexmidlemcase 5913 poxp 6285 fodjuomnilemdc 7203 omniwomnimkv 7226 exmidontriimlem1 7281 indpi 7402 suplocexprlemloc 7781 nneoor 9419 uzp1 9626 maxabslemlub 11351 xrmaxiflemlub 11391 nninfctlemfo 12177 exmidunben 12583 bj-nn0suc 15456 sbthomlem 15515 |
Copyright terms: Public domain | W3C validator |