ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim2d GIF version

Theorem orim2d 793
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim2d (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))

Proof of Theorem orim2d
StepHypRef Expression
1 idd 21 . 2 (𝜑 → (𝜃𝜃))
2 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 2orim12d 791 1 (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orim2  794  orbi2d  795  pm2.82  817  stdcndcOLD  851  pm2.13dc  890  exmid1dc  4284  acexmidlemcase  6002  poxp  6384  fodjuomnilemdc  7319  omniwomnimkv  7342  exmidontriimlem1  7411  indpi  7537  suplocexprlemloc  7916  nneoor  9557  uzp1  9764  maxabslemlub  11726  xrmaxiflemlub  11767  nninfctlemfo  12569  exmidunben  13005  bj-nn0suc  16351  sbthomlem  16423
  Copyright terms: Public domain W3C validator