ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim2d GIF version

Theorem orim2d 789
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim2d (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))

Proof of Theorem orim2d
StepHypRef Expression
1 idd 21 . 2 (𝜑 → (𝜃𝜃))
2 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 2orim12d 787 1 (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orim2  790  orbi2d  791  pm2.82  813  stdcndcOLD  847  pm2.13dc  886  exmid1dc  4233  acexmidlemcase  5917  poxp  6290  fodjuomnilemdc  7210  omniwomnimkv  7233  exmidontriimlem1  7288  indpi  7409  suplocexprlemloc  7788  nneoor  9428  uzp1  9635  maxabslemlub  11372  xrmaxiflemlub  11413  nninfctlemfo  12207  exmidunben  12643  bj-nn0suc  15610  sbthomlem  15669
  Copyright terms: Public domain W3C validator