ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efexp GIF version

Theorem efexp 11935
Description: The exponential of an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
efexp ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁))

Proof of Theorem efexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 9376 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 mulcom 8053 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) = (𝑁 · 𝐴))
31, 2sylan2 286 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴 · 𝑁) = (𝑁 · 𝐴))
43fveq2d 5579 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝐴 · 𝑁)) = (exp‘(𝑁 · 𝐴)))
5 oveq2 5951 . . . . . 6 (𝑗 = 0 → (𝐴 · 𝑗) = (𝐴 · 0))
65fveq2d 5579 . . . . 5 (𝑗 = 0 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · 0)))
7 oveq2 5951 . . . . 5 (𝑗 = 0 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑0))
86, 7eqeq12d 2219 . . . 4 (𝑗 = 0 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · 0)) = ((exp‘𝐴)↑0)))
9 oveq2 5951 . . . . . 6 (𝑗 = 𝑘 → (𝐴 · 𝑗) = (𝐴 · 𝑘))
109fveq2d 5579 . . . . 5 (𝑗 = 𝑘 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · 𝑘)))
11 oveq2 5951 . . . . 5 (𝑗 = 𝑘 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑𝑘))
1210, 11eqeq12d 2219 . . . 4 (𝑗 = 𝑘 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)))
13 oveq2 5951 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴 · 𝑗) = (𝐴 · (𝑘 + 1)))
1413fveq2d 5579 . . . . 5 (𝑗 = (𝑘 + 1) → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · (𝑘 + 1))))
15 oveq2 5951 . . . . 5 (𝑗 = (𝑘 + 1) → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑(𝑘 + 1)))
1614, 15eqeq12d 2219 . . . 4 (𝑗 = (𝑘 + 1) → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘𝐴)↑(𝑘 + 1))))
17 oveq2 5951 . . . . . 6 (𝑗 = -𝑘 → (𝐴 · 𝑗) = (𝐴 · -𝑘))
1817fveq2d 5579 . . . . 5 (𝑗 = -𝑘 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · -𝑘)))
19 oveq2 5951 . . . . 5 (𝑗 = -𝑘 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑-𝑘))
2018, 19eqeq12d 2219 . . . 4 (𝑗 = -𝑘 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘)))
21 oveq2 5951 . . . . . 6 (𝑗 = 𝑁 → (𝐴 · 𝑗) = (𝐴 · 𝑁))
2221fveq2d 5579 . . . . 5 (𝑗 = 𝑁 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · 𝑁)))
23 oveq2 5951 . . . . 5 (𝑗 = 𝑁 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑𝑁))
2422, 23eqeq12d 2219 . . . 4 (𝑗 = 𝑁 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · 𝑁)) = ((exp‘𝐴)↑𝑁)))
25 ef0 11925 . . . . 5 (exp‘0) = 1
26 mul01 8460 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
2726fveq2d 5579 . . . . 5 (𝐴 ∈ ℂ → (exp‘(𝐴 · 0)) = (exp‘0))
28 efcl 11917 . . . . . 6 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
2928exp0d 10810 . . . . 5 (𝐴 ∈ ℂ → ((exp‘𝐴)↑0) = 1)
3025, 27, 293eqtr4a 2263 . . . 4 (𝐴 ∈ ℂ → (exp‘(𝐴 · 0)) = ((exp‘𝐴)↑0))
31 oveq1 5950 . . . . . . 7 ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
3231adantl 277 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
33 nn0cn 9304 . . . . . . . . . 10 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
34 ax-1cn 8017 . . . . . . . . . . . 12 1 ∈ ℂ
35 adddi 8056 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
3634, 35mp3an3 1338 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
37 mulrid 8068 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
3837adantr 276 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 1) = 𝐴)
3938oveq2d 5959 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝐴 · 𝑘) + (𝐴 · 1)) = ((𝐴 · 𝑘) + 𝐴))
4036, 39eqtrd 2237 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + 𝐴))
4133, 40sylan2 286 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + 𝐴))
4241fveq2d 5579 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (exp‘(𝐴 · (𝑘 + 1))) = (exp‘((𝐴 · 𝑘) + 𝐴)))
43 mulcl 8051 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 𝑘) ∈ ℂ)
4433, 43sylan2 286 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴 · 𝑘) ∈ ℂ)
45 simpl 109 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
46 efadd 11928 . . . . . . . . 9 (((𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘((𝐴 · 𝑘) + 𝐴)) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
4744, 45, 46syl2anc 411 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (exp‘((𝐴 · 𝑘) + 𝐴)) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
4842, 47eqtrd 2237 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
4948adantr 276 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
50 expp1 10689 . . . . . . . 8 (((exp‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((exp‘𝐴)↑(𝑘 + 1)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
5128, 50sylan 283 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((exp‘𝐴)↑(𝑘 + 1)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
5251adantr 276 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → ((exp‘𝐴)↑(𝑘 + 1)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
5332, 49, 523eqtr4d 2247 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘𝐴)↑(𝑘 + 1)))
5453exp31 364 . . . 4 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0 → ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘𝐴)↑(𝑘 + 1)))))
55 oveq2 5951 . . . . . 6 ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (1 / (exp‘(𝐴 · 𝑘))) = (1 / ((exp‘𝐴)↑𝑘)))
56 nncn 9043 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
57 mulneg2 8467 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · -𝑘) = -(𝐴 · 𝑘))
5856, 57sylan2 286 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝐴 · -𝑘) = -(𝐴 · 𝑘))
5958fveq2d 5579 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (exp‘(𝐴 · -𝑘)) = (exp‘-(𝐴 · 𝑘)))
6056, 43sylan2 286 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝐴 · 𝑘) ∈ ℂ)
61 efneg 11932 . . . . . . . . 9 ((𝐴 · 𝑘) ∈ ℂ → (exp‘-(𝐴 · 𝑘)) = (1 / (exp‘(𝐴 · 𝑘))))
6260, 61syl 14 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (exp‘-(𝐴 · 𝑘)) = (1 / (exp‘(𝐴 · 𝑘))))
6359, 62eqtrd 2237 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (exp‘(𝐴 · -𝑘)) = (1 / (exp‘(𝐴 · 𝑘))))
64 efap0 11930 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘𝐴) # 0)
65 nnnn0 9301 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
66 expnegap0 10690 . . . . . . . 8 (((exp‘𝐴) ∈ ℂ ∧ (exp‘𝐴) # 0 ∧ 𝑘 ∈ ℕ0) → ((exp‘𝐴)↑-𝑘) = (1 / ((exp‘𝐴)↑𝑘)))
6728, 64, 65, 66syl2an3an 1310 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((exp‘𝐴)↑-𝑘) = (1 / ((exp‘𝐴)↑𝑘)))
6863, 67eqeq12d 2219 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘) ↔ (1 / (exp‘(𝐴 · 𝑘))) = (1 / ((exp‘𝐴)↑𝑘))))
6955, 68imbitrrid 156 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘)))
7069ex 115 . . . 4 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ → ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘))))
718, 12, 16, 20, 24, 30, 54, 70zindd 9490 . . 3 (𝐴 ∈ ℂ → (𝑁 ∈ ℤ → (exp‘(𝐴 · 𝑁)) = ((exp‘𝐴)↑𝑁)))
7271imp 124 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝐴 · 𝑁)) = ((exp‘𝐴)↑𝑁))
734, 72eqtr3d 2239 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175   class class class wbr 4043  cfv 5270  (class class class)co 5943  cc 7922  0cc0 7924  1c1 7925   + caddc 7927   · cmul 7929  -cneg 8243   # cap 8653   / cdiv 8744  cn 9035  0cn0 9294  cz 9371  cexp 10681  expce 11895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-disj 4021  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-sup 7085  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-ico 10015  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-fac 10869  df-bc 10891  df-ihash 10919  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-clim 11532  df-sumdc 11607  df-ef 11901
This theorem is referenced by:  efzval  11936  efgt0  11937  tanval3ap  11967  demoivre  12026  ef2kpi  15220  reexplog  15285  relogexp  15286
  Copyright terms: Public domain W3C validator